Affiliation:
1. 1Natural Rubber Producers' Research Association, Welwyn Garden City, Herts., England
Abstract
Abstract
Tensile fatigue failure of a gum vulcanizate of noncrystallizing SBR can be accounted for by the growth of small flaws initially present in the rubber. Fatigue of crystallizing natural rubber was shown in Part I to be attributable to the same cause. Cut growth results are interpreted in terms of the tearing energy theory of Rivlin and Thomas. SBR exhibits cut growth under both static and dynamic conditions; in each case the rate is approximately proportional to the fourth power of the tearing energy. Variation of the dynamic cut growth rate with frequency can be explained by the summation of a time-dependent static component of growth and a cyclic component not dissimilar to that occurring in natural rubber. Fatigue failure, under both static and dynamic conditions, is predicted from the cut growth results. These predictions are found to account quantitatively for experimentally observed fatigue lives when a suitable value is assumed for the initial flaw size. Fatigue lives at different temperatures correlate well with cut growth results obtained by Greensmith and Thomas over the same temperature range. The results are compared to those obtained previously for natural rubber, and possible reasons for the differences in fatigue behavior of crystallizing and non-crystallizing rubbers are discussed.
Subject
Materials Chemistry,Polymers and Plastics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献