Skip to main content
Log in

Clinical and Prognostic Significance of Glutathione Peroxidase 2 in Lung Adenocarcinoma

  • Translational Research
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Glutathione peroxidase 2 (GPX2) is an antioxidant enzyme with an important role in tumor progression in various cancers. However, the clinical significance of GPX2 in lung adenocarcinoma has not been clarified.

Methods

Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was used to analyze GPX2 mRNA expression. Then, we conducted immunohistochemistry (IHC) to assess GPX2 expression in specimens acquired from 351 patients with lung adenocarcinoma who underwent surgery at Kyushu University from 2003 to 2012. We investigated the association between GPX2 expression and clinicopathological characteristics and further analyzed the prognostic relevance.

Results

qRT-PCR revealed that GPX2 mRNA expression was notably higher in tumor cells than in normal tissues. IHC revealed that high GPX2 expression (n = 175, 49.9%) was significantly correlated with male sex, smoking, advanced pathological stage, and the presence of pleural, lymphatic, and vascular invasion. Patients with high GPX2 expression exhibited significantly shorter recurrence-free survival (RFS) and overall survival. Multivariate analysis identified high GPX2 expression as an independent prognostic factor of RFS.

Conclusions

GPX2 expression was significantly associated with pathological malignancy. It is conceivable that high GPX2 expression reflects tumor malignancy. Therefore, high GPX2 expression is a significant prognostic factor of poor prognosis for completely resected lung adenocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17–48.

    Article  PubMed  Google Scholar 

  2. Ramalingam SS, Vansteenkiste J, Planchard D, et al. Overall survival with Osimertinib in untreated, EGFR-mutated advanced NSCLC. N Engl J Med. 2020;382(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  3. Recondo G, Facchinetti F, Olaussen KA, et al. Making the first move in EGFR-driven or ALK-driven NSCLC: first-generation or next-generation TKI? Nat Rev Clin Oncol. 2018;15(11):694–708.

    Article  CAS  PubMed  Google Scholar 

  4. Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375(19):1823–33.

    Article  CAS  PubMed  Google Scholar 

  5. Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017;389(10066):255–65.

    Article  PubMed  Google Scholar 

  6. Sahoo BM, Banik BK, Borah P, et al. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer Agents Med Chem. 2022;22(2):215–22.

    Article  CAS  PubMed  Google Scholar 

  7. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 2017;387:95–105.

    Article  CAS  PubMed  Google Scholar 

  8. Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta. 2016;1863(12):2977–92.

    Article  CAS  PubMed  Google Scholar 

  9. Ishimoto T, Nagano O, Yae T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell. 2011;19(3):387–400.

    Article  CAS  PubMed  Google Scholar 

  10. Kumari S, Badana AK, Malla R. Reactive oxygen species: a key constituent in cancer survival. Biomarker Insights. 2018;6(13):1177271918755391.

    Google Scholar 

  11. Griess B, Tom E, Domann F, et al. Extracellular superoxide dismutase and its role in cancer. Free Radic Biol Med. 2017;112:464–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pei J, Pan X, Wei G, et al. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front Pharmacol. 2023;14:1147414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh A, Rangasamy T, Thimmulappa RK, et al. Glutathione peroxidase 2, the major cigarette smoke-inducible isoform of GPX in lungs, is regulated by Nrf2. Am J Respir Cell Mol Biol. 2006;35(6):639–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zalewska-Ziob M, Adamek B, Kasperczyk J, et al. Activity of antioxidant enzymes in the tumor and adjacent noncancerous tissues of non-small-cell lung cancer. Oxid Med Cell Longev. 2019;2019:2901840.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Esworthy RS, Doroshow JH, Chu FF. The beginning of GPX2 and 30 years later. Free Radic Biol Med. 2022;188:419–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Du H, Chen B, Jiao NL, et al. Elevated glutathione peroxidase 2 expression promotes cisplatin resistance in lung adenocarcinoma. Oxid Med Cell Longev. 2020;2020:7370157.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peng F, Xu Q, Jing X, et al. GPX2 promotes EMT and metastasis in non-small cell lung cancer by activating PI3K/AKT/mTOR/Snail signaling axis. FASEB Bioadv. 2023;5(6):233–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu T, Kan XF, Ma C, et al. GPX2 overexpression indicates poor prognosis in patients with hepatocellular carcinoma. Tumour Biol. 2017;39(6):1010428317700410.

    Article  PubMed  Google Scholar 

  19. Yang H, Wang W, Zhang Y, et al. The role of NF-E2-related factor 2 in predicting chemoresistance and prognosis in advanced non-small-cell lung cancer. Clin Lung Cancer. 2011;12(3):166–71.

    Article  PubMed  Google Scholar 

  20. Zimta AA, Cenariu D, Irimie A, Magdo L, Nabavi SM, Atanasov AG, Berindan-Neagoe I. The role of Nrf2 activity in cancer development and progression. Cancers. 2019;11(11):1755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu D, Sun L, Tong J, et al. Prognostic significance of glutathione peroxidase 2 in gastric carcinoma. Tumour Biol. 2017;39(6):1010428317701443.

    Article  PubMed  Google Scholar 

  22. Naiki T, Naiki-Ito A, Asamoto M, et al. GPX2 overexpression is involved in cell proliferation and prognosis of castration-resistant prostate cancer. Carcinogenesis. 2014;35(9):1962–7.

    Article  CAS  PubMed  Google Scholar 

  23. Ren Z, Liang H, Galbo PM Jr, et al. Redox signaling by glutathione peroxidase 2 links vascular modulation to metabolic plasticity of breast cancer. Proceed Nat Acad Sci. 2022;119(8):e2107266119.

    Article  CAS  Google Scholar 

  24. Lei Z, Tian D, Zhang C, et al. Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma. BMC Cancer. 2016;16:410.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li F, Dai L, Niu J. GPX2 silencing relieves epithelial-mesenchymal transition, invasion, and metastasis in pancreatic cancer by downregulating Wnt pathway. J Cell Physiol. 2020;235(11):7780–90.

    Article  CAS  PubMed  Google Scholar 

  26. Xu H, Hu C, Wang Y, et al. Glutathione peroxidase 2 knockdown suppresses gastric cancer progression and metastasis via regulation of kynurenine metabolism. Oncogene. 2023;42(24):1994–2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Satoh H, Moriguchi T, Saigusa D, et al. NRF2 intensifies host defense systems to prevent lung carcinogenesis, but after tumor initiation accelerates malignant cell growth. Cancer Res. 2016;76(10):3088–96.

    Article  CAS  PubMed  Google Scholar 

  28. Huang H, Zhang W, Pan Y, et al. YAP suppresses lung squamous cell carcinoma progression via deregulation of the DNp63-GPX2 axis and ROS accumulation. Cancer Res. 2017;77(21):5769–81.

    Article  CAS  PubMed  Google Scholar 

  29. Wang M, Chen X, Fu G, et al. Glutathione peroxidase 2 overexpression promotes malignant progression and cisplatin resistance of KRAS-mutated lung cancer cells. Oncol Rep. 2022;48(6):1–4.

    Article  Google Scholar 

  30. Ahmed KM, Veeramachaneni R, Deng D, et al. Glutathione peroxidase 2 is a metabolic driver of the tumor immune microenvironment and immune checkpoint inhibitor response. J Immunother Cancer. (2022);10(8)

Download references

Acknowledgment

We thank Joe Barber, Jr., PhD, from Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taichi Matsubara MD, PhD.

Ethics declarations

Disclosure

All authors declare no conflicts of interest associated with this research. The graphical abstract has been designed using freely available resources from Flaticon.com.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10434_2024_15116_MOESM1_ESM.pdf

Nrf2 expression in lung adenocarcinoma specimens. Examples of Nrf2 staining with intensity scores of (a) 0, (b) 1, and (c) 2. Scale bar: 200 μm. Nrf2, nuclear factor erythroid 2-related factor 2; IS, intensity score (PDF 78 kb)

10434_2024_15116_MOESM2_ESM.pdf

The correlation between GPX2 and NFE2L2 expression in lung adenocarcinoma as determined by GSEA using a dataset from TCGA (a). Nrf2 expression in patients with surgically resected lung adenocarcinoma and high (n = 30) or low GPX2 (n = 30) expression on IHC analysis (b). GPX2, glutathione peroxidase 2; GSEA, gene set enrichment analysis; IHC, immunohistochemistry; Nrf2, nuclear factor erythroid 2-related factor 2; TCGA, The Cancer Genome Atlas (PDF 77 kb)

10434_2024_15116_MOESM3_ESM.pdf

GPX2 expression in normal lung tissue and lung adenocarcinoma tissue in TCGA analysis (a). Kaplan–Meier curves of overall survival in patients with surgically resected lung adenocarcinoma according to GPX2 expression in TCGA analysis (b). GPX2, glutathione peroxidase 2; TCGA, The Cancer Genome Atlas (PDF 53 kb)

Supplementary file4 (DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashinokuchi, A., Matsubara, T., Ono, Y. et al. Clinical and Prognostic Significance of Glutathione Peroxidase 2 in Lung Adenocarcinoma. Ann Surg Oncol (2024). https://doi.org/10.1245/s10434-024-15116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1245/s10434-024-15116-z

Keywords

Navigation