Author:
Missoum A., ,Sabri N. G.,Daoudi M.,Guedaouria H.,Benamara A., , , ,
Abstract
In this work, we focused on investigating the eigen frequency and internal standing wave characteristics of a vertical surface cavity emitting laser operating at a wavelength of 1.55 µm. The design of the cavity involved determining the cavity length, selecting the material for the cavity spacer, and carefully placing the quantum wells within the cavity to achieve maximum overlap with the electric field. In our case, the choice of the dielectric Bragg mirror with SiO2/TiO2 layers helps in achieving high reflectivity and low optical losses. The quantum wells are strategically placed within the cavity to ensure maximum overlap with the electric field. This allows for efficient carrier injection and recombination, leading to laser emission. The specific composition of the quantum wells, In0.54Ga0.46As0.99P0.01 / In0.75Ga0.25As0.55P0.45, indicates the proportions of indium (In), gallium (Ga), arsenic (As), and phosphorus (P) in the material. These compositions are chosen to achieve the desired electronic band structure and emission wavelength. By studying the eigen frequency and internal standing waves in our designed laser cavity, our aim is to understand the resonant modes and behavior of light within the device. This knowledge is crucial for optimizing the laser's performance and improving its efficiency for various applications.
Publisher
Virtual Company of Physics
Subject
Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials