Please wait a minute...
金属学报  2021, Vol. 57 Issue (6): 757-766    DOI: 10.11900/0412.1961.2020.00255
  研究论文 本期目录 | 过刊浏览 |
激光沉积法制备Ti/TNTZO层状材料及其组织性能
张婷, 李仲杰, 许浩, 董安平(), 杜大帆, 邢辉, 汪东红, 孙宝德
上海交通大学 材料科学与工程学院 上海市先进高温材料与精密成形重点实验室 上海 200240
Microstruture and Properties of Ti/TNTZO Multi-Layered Material by Direct Laser Deposition
ZHANG Ting, LI Zhongjie, XU Hao, DONG Anping(), DU Dafan, XING Hui, WANG Donghong, SUN Baode
Shanghai Key Lab of Advanced High-Temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
引用本文:

张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
Ting ZHANG, Zhongjie LI, Hao XU, Anping DONG, Dafan DU, Hui XING, Donghong WANG, Baode SUN. Microstruture and Properties of Ti/TNTZO Multi-Layered Material by Direct Laser Deposition[J]. Acta Metall Sin, 2021, 57(6): 757-766.

全文: PDF(21113 KB)   HTML
摘要: 

采用直接激光沉积法(DLD)制备了工业纯Ti (CP-Ti)与TNTZO合金复合的Ti/TNTZO层状材料,对其微观组织、相组成、力学性能以及体外生物活性进行了分析。结果表明,通过DLD工艺可制备高致密度、无裂纹的Ti/TNTZO层状材料。所制备的层状材料主要由α/α'β 2相组成。层状材料的Ti层由于合金元素扩散及较快的凝固速率使其组织细化,硬度明显升高;TNTZO层因β稳定元素稀释,亚晶界处产生了大量马氏体,硬度增加。单向拉伸实验结果表明,Ti/TNTZO层状梯度材料具有远高于成分材料CP-Ti和TNTZO的拉伸屈服强度与抗拉强度,但界面处产生的大量马氏体导致了材料塑性降低。对Ti/TNTZO层状材料进行模拟体液浸泡,结果显示,Ti/TNTZO层状材料浸泡过程中未产生明显的腐蚀,且可有效诱导磷灰石的形核与长大,在人体植入物领域具有很好的应用前景。

关键词 层状材料直接激光沉积TNTZO双相钛合金植入物    
Abstract

Commercially pure titanium (CP-Ti) is a human-implant metal material commonly used for cardiovascular scaffolds and dental implants in the medical field. This is because CP-Ti has better biocompatibility and corrosion resistance compared to other alloys such as titanium-aluminum-vanadium alloy (Ti-6Al-4V). However, the low strength properties of CP-Ti have limited its wider application (e.g., load-bearing components). On the contrary, Novel β titanium alloys possess higher strength and lower elastic modulus, which has led to the consideration of Ti-Nb based alloys for biomedical applications, while also taking into consideration their biocompatibility and other mechanical properties. Recently, laminated metal composites (LMCs) have attracted a lot of attention due to the excellent properties of the constituent alloys. Direct laser deposition (DLD) is an additive manufacturing technology that can be potentially used to manufacture LMCs. In this work, the DLD process was used to manufacture Ti/TNTZO LMC, and CP-Ti and TNTZO alloy powders were the raw materials. Subsequently, the microstructure, phase composition, mechanical properties, and in vitro bioactivity of the Ti/TNTZO LMCs were analyzed. The results demonstrated that high-density, crack-free Ti/TNTZO can be fabricated using the DLD process. Ti/TNTZO is mainly composed of α/α' and β phases. Transmitted Kikuchi diffraction maps showed the presence of α" martensite, but due to its low content, there were no relevant peaks in the X-ray powder diffraction spectra. The hardness of the Ti region in the Ti/TNTZO increased due to the diffusion of alloy elements and refinement of the structure formed as a result of a faster cooling rate. However, for the TNTZO region, the hardness also increased due to the martensite transformation caused by the dilution of β-stabilizing elements compared with the TNTZO manufactured using the DLD process. In comparison with the CP-Ti and TNTZO made using the DLD process, the microstructure of the Ti/TNTZO multilayered materials was significantly different. The microstructure of Ti layers had coarse columnar grains and fine α/α' plates, and there was acicular martensite at the subgrain boundary of the TNTZO layers. As a result of the alloy elements diffusion, transition layer with a size of approximately 50 μm was found between the Ti layer and TNTZO layer. The tensile test results also showed that the multilayered materials have high yield strength and ultimate tensile strength. However, the presence of acicular martensite at the interface reduces the plasticity of the materials. Additionally, the Ti/TNTZO multilayered materials showed good ability to induce apatite formation after soaking in simulated body fluid for 14 d. Therefore, the results of this study showed that the Ti/TNTZO multilayered composites fabricated using the DLD process have potential application in the biomedical field.

Key wordsmulti-layered material    direct laser deposition    TNTZO    dual-phase Ti alloy    implant
收稿日期: 2020-07-13     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金项目(51871152)
作者简介: 张 婷,女,1995年生,硕士生
图1  直接激光沉积(DLD)制备Ti/TNTZO层状材料流程图
MaterialLaser powder / WScan speed / (mm·s-1)Powder feed rate / (r·min-1)Hatch rate / %
CP-Ti80012150
TNTZO800121.350
表1  本工作中所采用的DLD工艺参数
图2  采用DLD技术制备的CP-Ti、TNTZO以及Ti/TNTZO层状材料显微组织的OM像
图3  采用DLD技术制备的CP-Ti、TNTZO与Ti/TNTZO层状材料的XRD谱
图4  采用DLD技术制备的CP-Ti、TNTZO合金微观组织及EBSD分析(a, d) OM images, yz plane (b, e) SEM images, xz plane (c, f) inverse pole figures X (IPF-X) and phase images (insets) of EBSD analysis, xz plane
图5  Ti/TNTZO层状材料的三维金相视图及EDS线扫描分析
图6  Ti/TNTZO层状材料微观组织及EBSD分析(a) OM image (b) back scattered electron (BSE) image (c, d) high magnified BSE images on TNTZO layer (c) and Ti layer (d) (e, f) IPF image (e) and Ti element distribution (f) of TNTZO layer (g, h) IPF image (g) and phase image (h) of Ti layer
图7  Ti/TNTZO层状材料界面处微观组织(a) SEM-BSE image (b) EBSD phase map (c, d) Kikuchi lines of α' martensite (c) and α'' martensite (d)
图8  Ti/TNTZO层状材料不同位置的显微硬度图
SampleYield strength / MPaUltimate tensile strength / MPaElongation / %
CP-Ti364 ± 9406 ± 1225 ± 2
TNTZO702 ± 10716 ± 1538 ± 2
Ti/TNTZO653 ± 18830 ± 273.5 ± 1
表2  采用DLD工艺制备的CP-Ti、TNTZO与Ti/TNTZO合金拉伸性能
图9  Ti/TNTZO层状材料拉伸断口形貌
图10  Ti/TNTZO层状材料经模拟体液浸泡14 d后表面形貌SEM像及EDS分析结果(a-c) SEM images with different magnifications (d) EDS analysis of the area in Fig.10c
1 Zheng Y F, Wu Y H. Revolutionizing metallic biomaterials [J]. Acta Metall. Sin., 2017, 53: 257
1 郑玉峰, 吴远浩. 处在变革中的医用金属材料 [J]. 金属学报, 2017, 53: 257
2 Niinomi M. Recent research and development in titanium alloys for biomedical applications and healthcare goods [J]. Sci. Technol. Adv. Mater., 2003, 4: 445
3 Jacobs J J, Skipor A K, Patterson L M, et al. Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study [J]. J. Bone Joint Surg., 1998, 80: 1447
4 An B L, Li Z R, Diao X O, et al. In vitro and in vivo studies of ultrafine-grain Ti as dental implant material processed by ECAP [J]. Mater. Sci. Eng., 2016, C67: 34
5 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
6 Wang Q, Han C J, Choma T, et al. Effect of Nb content on microstructure, property and in vitro apatite-forming capability of Ti-Nb alloys fabricated via selective laser melting [J]. Mater. Des., 2017, 126: 268
7 Mareci D, Chelariu R, Gordin D M, et al. Comparative corrosion study of Ti-Ta alloys for dental applications [J]. Acta Biomater., 2009, 5: 3625
8 Zhao X F, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications [J]. Acta Biomater., 2012, 8: 1990
9 Li Y C, Ding Y F, Munir K, et al. Novel β-Ti35Zr28Nb alloy scaffolds manufactured using selective laser melting for bone implant applications [J]. Acta Biomater., 2019, 87: 273
10 Zhang J R, Zhang Y W, Hao Y L, et al. Plastic deformation behavior of biomedical Ti-24Nb-4Zr-8Sn single crystal alloy [J]. Acta Metall. Sin., 2017, 53: 1385
10 张金睿, 张晏玮, 郝玉琳等. 生物医用Ti-24Nb-4Zr-8Sn单晶合金塑性变形行为研究 [J]. 金属学报, 2017, 53: 1385
11 Bai Y, Li S J, Hao Y L, et al. Electrochemical corrosion behavior of a new biomedical Ti-24Nb-4Zr-8Sn alloy in Hanks solution [J]. Acta Metall. Sin., 2012, 48: 76
11 白 芸, 李述军, 郝玉琳等. 新型医用Ti-24Nb-4Zr-8Sn合金在Hanks溶液中的电化学腐蚀行为研究 [J]. 金属学报, 2012, 48: 76
12 Wang S P, Xu J. TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties [J]. Mater. Sci. Eng., 2017, C73: 80
13 Saito T, Furuta T, Hwang J H, et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism [J]. Science, 2003, 300: 464
14 Tane M, Nakano T, Kuramoto S, et al. Low young's modulus in Ti-Nb-Ta-Zr-O alloys: Cold working and oxygen effects [J]. Acta Mater., 2011, 59: 6975
15 Guo W Y, Sun J, Wu J S. Electrochemical and XPS studies of corrosion behavior of Ti-23Nb-0.7Ta-2Zr-O alloy in Ringer's solution [J]. Mater. Chem. Phys., 2009, 113: 816
16 Li J S, Wang S Z, Mao Q Z, et al. Soft/hard copper/bronze laminates with superior mechanical properties [J]. Mater. Sci. Eng., 2019, A756: 213
17 Putra N E, Mirzaali M J, Apachitei I, et al. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution [J]. Acta Biomater., 2020, 109: 1
18 Zhang K, Tian X, Bermingham M, et al. Effects of boron addition on microstructures and mechanical properties of Ti-6Al-4V manufactured by direct laser deposition [J]. Mater. Des., 2019, 184: 108191
19 Lima D D, Mantri S A, Mikler C V, et al. Laser additive processing of a functionally graded internal fracture fixation plate [J]. Mater. Des., 2017, 130: 8
20 Schneider-Maunoury C, Weiss L, Perroud O, et al. An application of differential injection to fabricate functionally graded Ti-Nb alloys using DED-CLAD® process [J]. J. Mater. Process. Technol., 2019, 268: 171
21 He B, Xing M, Yang G, et al. Effect of composition gradient on microstructure and properties of laser deposition TC4/TC11 interface [J]. Acta Metall. Sin., 2019, 55: 1251
21 何 波, 邢 盟, 杨 光, 等. 成分梯度对激光沉积制造TC4/TC11连接界面组织和性能的影响 [J]. 金属学报, 2019, 55: 1251
22 Liu Y, Liang C P, Liu W S, et al. Dilution of Al and V through laser powder deposition enables a continuously compositionally Ti/Ti6Al4V graded structure [J]. J. Alloys Compd., 2018, 763: 376
23 Xu H, Xing H, Dong A P, et al. Investigation of gum metal coating on Ti6Al4V plate by direct laser deposition [J]. Surf. Coat. Technol., 2019, 363: 161
24 Zhao X, Song B, Fan W R, et al. Selective laser melting of carbon/AlSi10Mg composites: Microstructure, mechanical and electronical properties [J]. J. Alloys Compd., 2016, 665: 271
25 Kasperovich G, Haubrich J, Gussone J, et al. Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting [J]. Mater. Des., 2016, 105: 160
26 Sun Y, Moroz A, Alrbaey K. Sliding wear characteristics and corrosion behaviour of selective laser melted 316L stainless steel [J]. J. Mater. Eng. Perform., 2014, 23: 518
27 Meacock C, Vilar R. Laser powder microdeposition of CP2 titanium [J]. Mater. Des., 2008, 29: 353
28 Attar H, Calin M, Zhang L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J]. Mater. Sci. Eng., 2014, A593: 170
29 Li X P, van Humbeeck J, Kruth J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective [J]. Mater. Des., 2017, 116: 352
30 Yamanaka K, Saito W, Mori M, et al. Preparation of weak-textured commercially pure titanium by electron beam melting [J]. Addit. Manuf., 2015, 8: 105
31 Reichardt A, Dillon R P, Borgonia J P, et al. Development and characterization of Ti-6Al-4V to 304L stainless steel gradient components fabricated with laser deposition additive manufacturing [J]. Mater. Des., 2016, 104: 404
32 Dinda G P, Dasgupta A K, Mazumder J. Laser aided direct metal deposition of Inconel 625 superalloy: Microstructural evolution and thermal stability [J]. Mater. Sci. Eng., 2009, A509: 98
33 Yan H. Microstructure and interfacial characteristics of wear-resistant composite coatings on copper by laser cladding [D]. Wuhan: Huazhong University of Science and Technology, 2010
33 闫 华. 铜合金表面激光复合耐磨层及界面特性研究 [D]. 武汉: 华中科技大学, 2010
34 Boyer R, Welsch G, Collings E W. Materials properties handbook: Titanium alloys [R]. Materials Park: ASM, 1994
35 Wu X D, Yang G J, Ge P, et al. Inductions of β titanium alloy and solid state phase transition [J]. Titan. Ind. Prog., 2008, 25(5): 1
35 吴晓东, 杨冠军, 葛 鹏等. β钛合金及其固态相变的归纳 [J]. 钛工业进展, 2008, 25(5): 1
36 Zhang T, Xu H, Li Z J, et al. Microstructure and properties of TC4/TNTZO multi-layered composite by direct laser deposition [J]. J. Mech. Behav. Biomed. Mater., 2020, 109: 103842
37 Zhao D L, Han C J, Li J J, et al. In situ fabrication of a titanium-niobium alloy with tailored microstructures, enhanced mechanical properties and biocompatibility by using selective laser melting [J]. Mater. Sci. Eng., 2020, C111: 110784
38 Behera R R, Hasan A, Sankar M R, et al. Laser cladding with HA and functionally graded TiO2-HA precursors on Ti-6Al-4V alloy for enhancing bioactivity and cyto-compatibility [J]. Surf. Coat. Technol., 2018, 352: 420
[1] 刘广, 陈鹏, 姚锡禹, 陈朴, 刘星辰, 刘朝阳, 严明. CrMoTi中熵合金的性能及其原位合金化增材制造[J]. 金属学报, 2022, 58(8): 1055-1064.
[2] 郑士建, 闫哲, 孔祥飞, 张瑞丰. 纳米金属层状材料强塑性的界面调控[J]. 金属学报, 2022, 58(6): 709-725.
[3] 李学雄,徐东生,杨锐. 双相钛合金高温变形协调性的CPFEM研究[J]. 金属学报, 2019, 55(7): 928-938.
[4] 于振涛, 余森, 程军, 麻西群. 新型医用钛合金材料的研发和应用现状[J]. 金属学报, 2017, 53(10): 1238-1264.
[5] 张广平, 朱晓飞. 高性能铜系层状金属材料设计: 纳米尺度下强化能力与韧化能力思考*[J]. 金属学报, 2014, 50(2): 148-155.
[6] 金雪松; 欧盛荃 . K18/Mo纳米多层材料的力学性能及高温稳定性[J]. 金属学报, 2000, 36(1): 99-103 .