Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1466-1474    DOI: 10.11900/0412.1961.2021.00410
  本期目录 | 过刊浏览 |
Ti6Al4V表面微纳结构的制备及生物活性
高晗1,2(), 刘力1,2, 周笑宇1,2, 周心怡1,2, 蔡汶君1,2, 周泓伶1,2
1.山东大学 材料液固结构演变与加工教育部重点实验室 济南 250061
2.山东大学 材料科学与工程学院 济南 250061
Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface
GAO Han1,2(), LIU Li1,2, ZHOU Xiaoyu1,2, ZHOU Xinyi1,2, CAI Wenjun1,2, ZHOU Hongling1,2
1.Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
2.School of Materials Science and Engineering, Shandong University, Jinan 250061, China
引用本文:

高晗, 刘力, 周笑宇, 周心怡, 蔡汶君, 周泓伶. Ti6Al4V表面微纳结构的制备及生物活性[J]. 金属学报, 2023, 59(11): 1466-1474.
Han GAO, Li LIU, Xiaoyu ZHOU, Xinyi ZHOU, Wenjun CAI, Hongling ZHOU. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. Acta Metall Sin, 2023, 59(11): 1466-1474.

全文: PDF(2948 KB)   HTML
摘要: 

基于喷砂酸蚀技术,分别采用(36%~38%)HCl (质量分数)和20%HCl∶30%H2SO4 = 1∶1 (体积比)混合酸,同时施加超声场,研究了酸蚀试剂、酸蚀时间和超声场等不同工艺参数对Ti6Al4V合金表面酸洗结构和形貌的影响规律。通过喷砂酸洗+感应加热的复合工艺,实现了Ti6Al4V合金表面微纳米多级结构的制备。结果表明,在一定时间内随酸洗时间的延长,微孔内壁的阶梯结构更加明显,超声可以加速酸蚀;在喷砂酸蚀的表面进行800℃感应加热后,表面得到了微米复合孔+纳米氧化物的多级结构,模拟体液浸泡实验表明得到的微纳米多级结构具有较高的生物活性。

关键词 Ti表面改性酸蚀感应加热微纳结构    
Abstract

Titanium (Ti) and its alloys have been widely used in the medical field for dental and orthopedic surgeries owing to their excellent mechanical and biological properties. However, much effort has been devoted to the surface modification on Ti-based implants for better biological response in medical applications. Bioactive layers with micro- and nano-scale structures and morphologies can increase the specific surface area of the implants and facilitate rapid osseointegration, which has shown good biological behaviors both in the laboratory and clinical setting. Sandblasting and acid-etching (SLA) technology has become one of the most commonly used surface modification processes for currently marketed dental implants, since it can be easily operated and is efficient. However, studies on etching behavior are still limited. In this study, concentrated hydrochloric acid ((36%-38%)HCl, mass fraction) and mixed diluted acid (20%HCl : 30%H2SO4 = 1 : 1, volume fraction) were used to etch Ti6Al4V, and an ultrasonic field was applied to the acid etching treatment. The influence of different etching parameters on the surface structure and morphology of Ti6Al4V was discussed, including the acid etching reagent, acid etching time, and ultrasonic field. Moreover, through the combination of SLA and induction heating treatment (IHT) oxidation, the micro- and nano-scale hierarchical structure was prepared on the surface of Ti6Al4V. The evolution of surface topography, chemistry, roughness, wettability, and bioactivity of the hierarchical structure was discussed. The micro-scale composite pores combing dozens of micron pores and several micron pores were obtained by SLA. Within a certain etching time range, with the prolonging of the etching time, the step structure on the inner wall of the micro-pores becomes more obvious, and ultrasound can accelerate the acid etching. After the IHT at 800oC, the micro- and nano-scale hierarchical surface with micro-scale composite pores and nanoscale oxide was obtained. Compared with the SLA surface, there was a decrease in surface roughness and an increase in wettability. Furthermore, after soaking in simulated body fluid (SBF) for 14 d, a homogeneous hydroxyapatite (HA) layer was formed on the micro- and nano-scale structured Ti6Al4V surface, suggesting high biological activity of the fabricated structure.

Key wordsTi    surface modification    acid etching    induction heating treatment (IHT)    micro- and nano-scale structure
收稿日期: 2021-09-26     
ZTFLH:  TG178  
基金资助:国家级大学生创新创业训练计划项目(S202010422074)
通讯作者: 高 晗,201713597@mail.sdu.edu.cn,主要从事生物医用钛及钛合金表面改性研究
Corresponding author: GAO Han, Tel: 15194105516, E-mail: 201713597@mail.sdu.edu.cn
作者简介: 高 晗,女,1995年生,博士生
图1  Ti6Al4V经喷砂 + (36%~38%)HCl酸洗10、20和30 min后的表面SEM像
图2  Ti6Al4V经喷砂 + 20%HCl∶30%H2SO4 = 1∶1 (体积比)混合酸酸洗60 min后的表面SEM像
图3  Ti6Al4V经SLA + IHT得到的多级结构在模拟体液浸泡14 d前后的XRD谱
图4  Ti6Al4V经SLA + IHT得到的多级结构在模拟体液浸泡14 d前后的SEM像和EDS结果
图5  Ti6Al4V经喷砂+超声酸洗+感应加热后的表面三维形貌及粗糙度定量检测结果
图6  Ti6Al4V经喷砂+超声酸洗+感应加热后的表面水滴形貌图及润湿角
1 Dong H Q, Guo Z M, Mao X M, et al. Prospect of development trend of melting technology of titanium and/or its alloys with high efficiency and low energy consumption [J]. Mater. Rev., 2008, 22(5):68
1 董和泉, 国子明, 毛协民 等. 低能耗节约型钛及钛合金熔炼技术的发展趋势 [J]. 材料导报, 2008, 22(5): 68
2 Lin C W, Ju C P, Lin J H C. A comparison of the fatigue behavior of cast Ti-7.5Mo with c.p. titanium, Ti-6Al-4V and Ti-13Nb-13Zr alloys [J]. Biomaterials, 2005, 26: 2899
doi: 10.1016/j.biomaterials.2004.09.007
3 Zhao L C, Cui C X, Huang N. Design and performance study on two new low elastic modulus metastable β titanium alloys for biomedical application [J]. Tianjin Metall., 2009, (2): 13
3 赵立臣, 崔春翔, 黄 楠. 两种新型生物医用低弹性模量亚稳β钛合金的设计与性能研究 [J]. 天津冶金, 2009, (2): 13
4 Rao S, Ushida T, Tateishi T, et al. Effect of Ti, Al, and V ions on the relative growth rate of fibroblasts (L929) and osteoblasts (MC3T3-E1) cells [J]. Bio-Med. Mater. Eng., 1996, 6: 79
5 Walker P R, LeBlanc J, Sikorska M. Effects of aluminum and other cations on the structure of brain and liver chromatin [J]. Biochemistry, 1989, 28: 3911
pmid: 2752000
6 Sumitomo N, Noritake K, Hattori T, et al. Experiment study on fracture fixation with low rigidity titanium alloy: Plate fixation of tibia fracture model in rabbit [J]. J. Mater. Sci.: Mater. Med., 2008, 19: 1581
doi: 10.1007/s10856-008-3372-y
7 Ferraris S, Spriano S. Antibacterial titanium surfaces for medical implants [J]. Mater. Sci. Eng., 2016, C61: 965
8 Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
9 Ning C Q, Zhou Y. Development and research status of biomedical titanium alloys [J]. Mater. Sci. Technol., 2002, 10: 100
9 宁聪琴, 周 玉. 医用钛合金的发展及研究现状 [J]. 材料科学与工艺, 2002, 10: 100
10 Málek J, Hnilica F, Veselý J, et al. Microstructure and mechanical properties of Ti-35Nb-6Ta alloy after thermomechanical treatment [J]. Mater. Charact., 2012, 66: 75
doi: 10.1016/j.matchar.2012.02.012
11 Ren B, Wan Y, Wang G S, et al. Effects of surface morphology and composition of medical titanium alloys on biocompatibility [J]. Surf. Technol., 2018, 47(4): 160
11 任 冰, 万 熠, 王桂森 等. 医用钛合金表面形貌与成分对生物相容性影响研究综述 [J]. 表面技术, 2018, 47(4): 160
12 Zhao X F, Niinomi M, Nakai M, et al. Beta type Ti-Mo alloys with changeable Young's modulus for spinal fixation applications [J]. Acta Biomater., 2012, 8: 1990
doi: 10.1016/j.actbio.2012.02.004 pmid: 22326686
13 Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review [J]. Prog. Mater. Sci., 2012, 57: 911
doi: 10.1016/j.pmatsci.2011.11.001
14 Mendonça G, Mendonça D B S, Aragão F J L, et al. Advancing dental implant surface technology—From micron- to nanotopography [J]. Biomaterials, 2008, 29: 3822
doi: 10.1016/j.biomaterials.2008.05.012 pmid: 18617258
15 Jiao Y. Surface treatment and microstructure of biomedical titanium alloy [D]. Dalian: Dalian University of Technology, 2013
15 焦 岩. 生物医用钛合金表面处理及其微结构 [D]. 大连: 大连理工大学, 2013
16 Liu X Y, Chu P K, Ding C X. Surface modification of titanium, titanium alloys, and related materials for biomedical applications [J]. Mater. Sci. Eng., 2004, R47: 49
17 Hung K Y, Lin Y C, Feng H P. The effects of acid etching on the nanomorphological surface characteristics and activation energy of titanium medical materials [J]. Materials, 2017, 10: 1164
doi: 10.3390/ma10101164
18 Petersen A G, Klenerman D, Hedges W M, et al. Effect of cavitation on carbon dioxide corrosion and the development of a test for evaluating inhibitors [J]. Corrosion, 2002, 58: 216
doi: 10.5006/1.3279872
19 Hori N, Iwasa F, Ueno T, et al. Selective cell affinity of biomimetic micro-nano-hybrid structured TiO2 overcomes the biological dilemma of osteoblasts [J]. Dent. Mater., 2010, 26: 275
doi: 10.1016/j.dental.2009.11.077
20 Gittens R A, McLachlan T, Olivares-Navarrete R, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation [J]. Biomaterials, 2011, 32: 3395
doi: 10.1016/j.biomaterials.2011.01.029 pmid: 21310480
21 Li N B. Biological behaviors of micro/nano-scale bioactive oxide coatings prepared by induction heating on medical titanium and its alloys [D]. Jinan: Shandong University, 2018
21 李宁波. 医用钛及钛合金表面微-纳尺度生物活性氧化膜的感应加热制备及其生物学行为 [D]. 济南: 山东大学, 2018
22 Verheul M, Drijfhout J W, Pijls B G, et al. Non-contact induction heating and SAAP-148 eliminate persisters within MRSA biofilms mimicking a metal implant infection [J]. Eur. Cell. Mater., 2021, 42: 34
doi: 10.22203/eCM
23 Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? [J]. Biomaterials, 2006, 27: 2907
doi: 10.1016/j.biomaterials.2006.01.017 pmid: 16448693
24 Wang H Y, Zhu R F, Lu Y P, et al. Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation [J]. Appl. Surf. Sci., 2013, 282: 271
doi: 10.1016/j.apsusc.2013.05.119
25 Jung S C, Lee K, Kim B H. Biocompatibility of plasma polymerized sandblasted large grit and acid titanium surface [J]. Thin Solid Films, 2012, 521: 150
doi: 10.1016/j.tsf.2011.12.089
26 Saldaña L, Barranco V, González-Carrasco J L, et al. Thermal oxidation enhances early interactions between human osteoblasts and alumina blasted Ti6Al4V alloy [J]. J. Biomed. Mater. Res., 2007, 81A: 334
doi: 10.1002/jbm.a.v81a:2
27 Gobbato L, Arguello E, Martin I S, et al. Early bone healing around 2 different experimental, HA grit-blasted, and dual acid-etched titanium implant surfaces. A pilot study in rabbits [J]. Implant Dent., 2012, 21: 454
doi: 10.1097/ID.0b013e3182611cd7 pmid: 23149502
28 Szmukler-Moncler S, Perrin D, Ahossi V, et al. Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage [J]. J. Biomed. Mater. Res., 2004, 68B: 149
doi: 10.1002/(ISSN)1097-4636
29 Vanzillotta P S, Sader M S, Bastos I N, et al. Improvement of in vitro titanium bioactivity by three different surface treatments [J]. Dent. Mater., 2006, 22: 275
pmid: 16054681
30 Le Guéhennec L, Soueidan A, Layrolle P, et al. Surface treatments of titanium dental implants for rapid osseointegration [J]. Dent. Mater., 2007, 23: 844
doi: 10.1016/j.dental.2006.06.025 pmid: 16904738
31 Aparicio C, Padrós A, Gil F J. In vivo evaluation of micro-rough and bioactive titanium dental implants using histometry and pull-out tests [J]. J. Mech. Behav. Biomed. Mater., 2011, 4: 1672
doi: 10.1016/j.jmbbm.2011.05.005 pmid: 22098868
32 Chauhan P, Koul V, Bhatnagar N. Effect of acid etching temperature on surface physiochemical properties and cytocompatibility of Ti6Al4V ELI alloy [J]. Mater. Res. Express, 2019, 6: 105412
doi: 10.1088/2053-1591/ab3ac5
33 Park J Y, Davies J E. Red blood cell and platelet interactions with titanium implant surfaces [J]. Clin. Oral Implants Res., 2000, 11: 530
doi: 10.1034/j.1600-0501.2000.011006530.x
34 Ren B, Wan Y, Wang G S, et al. Influence of different acid-etching time on the surface morphology and corrosion resistance of TC4 titanium alloys after sandblasting [J]. J. Shandong Univ. (Eng. Sci.), 2017, 47(3): 139
34 任 冰, 万 熠, 王桂森 等. 酸蚀时间对喷砂后TC4钛合金表面形貌及抗腐蚀性的影响 [J]. 山东大学学报(工学版), 2017, 47(3):139
35 Ge Y M. Preparation and properties of nano-porous film on pure medical titanium [D]. Guangzhou: South China University of Technology, 2011
35 葛永梅. 医用纯钛表面纳米膜层的制备及其生物性能研究 [D]. 广州: 华南理工大学, 2011
36 Lu Y G, Song H L. Effect of ultrasonic on corrosion of zinc in hydrochloric acid [J]. J. South China Univ. Technol. (Nat. Sci. Ed.), 2011, 39(8): 77
36 卢义刚, 宋恒玲. 超声波对盐酸腐蚀锌的影响 [J]. 华南理工大学学报(自然科学版), 2011, 39(8): 77
37 Ooi S K, Biggs S. Ultrasonic initiation of polystyrene latex synthesis [J]. Ultrason. Sonochem., 2000, 7: 125
pmid: 10909731
38 Suslick K S, Hammerton D A, Cline R E. Sonochemical hot spot [J]. J. Am. Chem. Soc., 1986, 108: 5641
doi: 10.1021/ja00278a055
39 Rohanizadeh R, Al-Sadeq M, LeGeros R Z. Preparation of different forms of titanium oxide on titanium surface: Effects on apatite deposition [J]. J. Biomed. Mater. Res., 2004, 71A: 343
doi: 10.1002/(ISSN)1097-4636
40 Paital S R, Dahotre N B. Wettability and kinetics of hydroxyapatite precipitation on a laser-textured Ca-P bioceramic coating [J]. Acta Biomater., 2009, 5: 2763
doi: 10.1016/j.actbio.2009.03.004 pmid: 19362524
41 Li N B, Zhao X C, Geng S N, et al. Microstructures of Ti6Al4V matrices induce structural evolution of bioactive surface oxide layers via cold compression and induction heating [J]. Appl. Surf. Sci., 2021, 552: 149504
doi: 10.1016/j.apsusc.2021.149504
42 Wang W M, Lin S H, Li L, et al. Composition, microstructure and mechanical properties of Ti6Al4V (ELI) alloy bars for surgical implants [A]. The 14th National Titanium and Proceedings of the Titanium Alloy Academic Exchange Conference (Volume 1) [C]. Shanghai: Shanghai Scientific and Technological Literature Press, 2010: 555
42 王卫民, 林劭华, 李 雷 等. 外科植入物用Ti6Al4V(ELI)合金棒材的成分、组织和力学性能 [A]. 第十四届全国钛及钛合金学术交流会论文集 (上册) [C]. 上海: 上海科学技术文献出版社, 2010: 555
43 Singhvi R, Stephanopoulos G, Wang D I C. Effects of substratum morphology on cell physiology [J]. Biotechnol. Bioeng., 1994, 43: 764
pmid: 18615800
44 Kim H K, Jang J W, Lee C H. Surface modification of implant materials and its effect on attachment and proliferation of bone cells [J]. J. Mater. Sci.: Mater. Med., 2004, 15: 825
doi: 10.1023/B:JMSM.0000032824.62866.a1
45 Rønold H J, Ellingsen J E. Effect of micro-roughness produced by TiO2 blasting—Tensile testing of bone attachment by using coin-shaped implants [J]. Biomaterials, 2002, 23: 4211
pmid: 12194524
46 Ponsonnet L, Reybier K, Jaffrezic N, et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour [J]. Mater. Sci. Eng., 2003, C23: 551
47 Zhao X. Mechanism investigation on osteoblast adhesion affected by Ti6Al4V biological materials surface roughness [D]. Harbin: Harbin Institute of Technology, 2010
47 赵 昕. Ti6Al4V生物材料表面粗糙度对成骨细胞黏附的影响机制研究 [D]. 哈尔滨: 哈尔滨工业大学, 2010
48 Jiang H Y, Zhang Y X, Liang A G, et al. Influencing factors and prediction model of material surface wettability [J]. Surf. Technol., 2018, 47(1): 60
48 蒋华义, 张亦翔, 梁爱国 等. 材料表面润湿性的影响因素及预测模型 [J]. 表面技术, 2018, 47(1): 60
[1] 冯艾寒, 陈强, 王剑, 王皞, 曲寿江, 陈道伦. 低密度Ti2AlNb基合金热轧板微观组织的热稳定性[J]. 金属学报, 2023, 59(6): 777-786.
[2] 张东阳, 张钧, 李述军, 任德春, 马英杰, 杨锐. 热处理对选区激光熔化Ti55531合金多孔材料力学性能的影响[J]. 金属学报, 2023, 59(5): 647-656.
[3] 许林杰, 刘徽, 任玲, 杨柯. CuNi-Ti合金抗支架内再狭窄与耐蚀性能的影响[J]. 金属学报, 2023, 59(4): 577-584.
[4] 王虎, 赵琳, 彭云, 蔡啸涛, 田志凌. 激光熔化沉积TiB2 增强TiAl基合金涂层的组织及力学性能[J]. 金属学报, 2023, 59(2): 226-236.
[5] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[6] 姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] 李小兵, 潜坤, 舒磊, 张孟殊, 张金虎, 陈波, 刘奎. W含量对Ti-42Al-5Mn-xW合金相转变行为的影响[J]. 金属学报, 2023, 59(10): 1401-1410.
[8] 卢海飞, 吕继铭, 罗开玉, 鲁金忠. 激光热力交互增材制造Ti6Al4V合金的组织及力学性能[J]. 金属学报, 2023, 59(1): 125-135.
[9] 陈斐, 邱鹏程, 刘洋, 孙兵兵, 赵海生, 沈强. 原位激光定向能量沉积NiTi形状记忆合金的微观结构和力学性能[J]. 金属学报, 2023, 59(1): 180-190.
[10] 孙腾腾, 王洪泽, 吴一, 汪明亮, 王浩伟. 原位自生2%TiB2 颗粒对2024Al增材制造合金组织和力学性能的影响[J]. 金属学报, 2023, 59(1): 169-179.
[11] 杨超, 卢海洲, 马宏伟, 蔡潍锶. 选区激光熔化NiTi形状记忆合金研究进展[J]. 金属学报, 2023, 59(1): 55-74.
[12] 高栋, 周宇, 于泽, 桑宝光. 液氮温度下纯Ti动态塑性变形中的孪晶变体选择[J]. 金属学报, 2022, 58(9): 1141-1149.
[13] 沈莹莹, 张国兴, 贾清, 王玉敏, 崔玉友, 杨锐. SiCf/TiAl复合材料界面反应及热稳定性[J]. 金属学报, 2022, 58(9): 1150-1158.
[14] 梁琛, 王小娟, 王海鹏. 快速凝固Ti-Al-Nb合金B2相形成机制与显微力学性能[J]. 金属学报, 2022, 58(9): 1169-1178.
[15] 陈玉勇, 叶园, 孙剑飞. TiAl合金板材轧制研究现状[J]. 金属学报, 2022, 58(8): 965-978.