Assessing the production of galactooligosaccharides in batch and continuous mode by using β‐galactosidase immobilised on mesoporous silicon dioxide nanoparticles

Author:

C. T. Manoj Kumar1ORCID,S. Supreetha1,M. H. Sathish Kumar1,Rao Priyanka Singh2,K. Jayaraj Rao1

Affiliation:

1. Dairy Technology Section, Southern Regional Station ICAR‐National Dairy Research Institute Adugodi Bengaluru 560030 India

2. Dairy Chemistry Section, Southern Regional Station ICAR‐National Dairy Research Institute Adugodi Bengaluru 560030 India

Abstract

SummaryThe present study evaluated the production of galactooligosaccharides (GOSs) from lactose in both batch and continuous modes using nano‐immobilised β‐galactosidase. Mesoporous silicon dioxide nanoparticles were used to immobilise β‐galactosidase to enhance the stability and production of GOSs. The change in enzyme‐characteristics was assessed using Fourier‐transform infrared and scanning electron microscope analysis. The nano‐immobilisation increased the enzyme's substrate affinity, but decreased its hydrolytic activity. A significant increase (P < 0.05) in stability was observed across a wide range of temperature (30 °C–70 °C) and pH (5.0–8.0). Both forms of enzymes (free and nano‐immobilised enzymes) followed the zero‐order reaction in all temperatures, while the nano‐immobilised enzyme had the highest activation energy. The free and nano‐immobilised enzymes retained 64.65% and 77.82% of their initial activity after 90 days of storage, respectively. In a batch mode, the nano‐immobilised enzyme produced 2.35 times more GOSs than the free enzyme. The GOSs production remained consistent while the enzyme activity decreased by 12.7% after 5 cycles of operation. The continuous mode of production in a packed bed reactor achieved a GOSs yield of 16.92%. Overall, the nano‐immobilised enzyme showed better GOSs production under batch and continuous mode of operation.

Funder

Ministry of Food Processing Industries

Publisher

Wiley

Subject

Industrial and Manufacturing Engineering,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3