Nonlinear dynamical system approximation and adaptive control based on hybrid‐feed‐forward recurrent neural network: Simulation and stability analysis

Author:

Shobana R.1,Kumar Rajesh2ORCID,Jaint Bhavnesh1

Affiliation:

1. Department of Electrical Engineering Delhi Technological University, Shahbad Daulatpur Delhi India

2. Department of Electrical Engineering National Institute of Technology Kurukshetra Kurukshetra India

Abstract

AbstractWe proposed an online identification and adaptive control framework for the nonlinear dynamical systems using a novel hybrid‐feed‐forward recurrent neural network (HFRNN) model. The HFRNN is a combination of a feed‐forward neural network (FFNN) and a local recurrent neural network (LRNN). We aim to leverage the simplicity of FFNN and the effectiveness of RNN to capture changing dynamics accurately and design an indirect adaptive control scheme. To derive the weights update equations, we have applied the gradient‐descent‐based Back‐Propagation (BP) technique, and the stability of the proposed learning strategy is proven using the Lyapunov stability principles. We also compared the proposed method's results with those of the Jordan network‐based controller (JNC) and the local recurrent network‐based controller (LRNC) in the simulation examples. The results demonstrate that our approach performs satisfactorily, even in the presence of disturbance signals.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3