Large‐Scale Worst‐Case Topology Optimization

Author:

Zhang Di1,Zhai Xiaoya1,Fu Xiao‐Ming1,Wang Heming2,Liu Ligang1

Affiliation:

1. University of Science and Technology of China

2. Harrow International School Hong Kong

Abstract

AbstractWe propose a novel topology optimization method to efficiently minimize the maximum compliance for a high‐resolution model bearing uncertain external loads. Central to this approach is a modified power method that can quickly compute the maximum eigenvalue to evaluate the worst‐case compliance, enabling our method to be suitable for large‐scale topology optimization. After obtaining the worst‐case compliance, we use the adjoint variable method to perform the sensitivity analysis for updating the density variables. By iteratively computing the worst‐case compliance, performing the sensitivity analysis, and updating the density variables, our algorithm achieves the optimized models with high efficiency. The capability and feasibility of our approach are demonstrated over various large‐scale models. Typically, for a model of size 512×170×170 and 69934 loading nodes, our method took about 50 minutes on a desktop computer with an NVIDIA GTX 1080Ti graphics card with 11 GB memory.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computer Graphics and Computer-Aided Design

Reference42 articles.

1. Efficient non-linear reanalysis of skeletal structures using combined approximations

2. BaertJ.:Cuda voxelizer: A gpu-accelerated mesh voxelizer.https://github.com/Forceflow/cuda_voxelizer 2017. 4

3. Optimal shape design as a material distribution problem

4. Large-scale topology optimization in 3D using parallel computing

5. BendsøeM. SigmundO.:Optimization of structural topology shape and materials.1998. 2 3 5

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3