Design of photonic crystals for light‐emitting diodes

Author:

Wang Kaili1,Dong Xiangyuan1,Bu Yanyan2,Wang Xiangfu13ORCID

Affiliation:

1. College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology) Nanjing University of Posts and Telecommunications Nanjing China

2. College of Science Nanjing University of Posts and Telecommunications Nanjing China

3. State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou China

Abstract

AbstractPhotonic crystals (PCs) can greatly enhance the optoelectronic performance of light‐emitting diodes (LEDs) due to their distinctive color, photonic band gap, etc. Therefore, many scholars have conducted extensive research based on the high light extraction efficiency, good monochromaticity, and other excellent optoelectronic properties of PC LEDs. This review discusses the main principles of photonic crystals to improve the optoelectronic performance of LEDs and summarizes 12 structural applications of photonic crystal LEDs, such as PC slabs, Bragg grating, backside reflectors, surface PC, embedded PC, dual PC, PC beads, CPC, PC thin films, LIPC, defective PC, and composite architectures with other materials that boost LED optoelectronic qualities. In summary, it is found that photonic crystals can not only greatly improve the light extraction efficiency of LEDs but also improve other optoelectronic properties such as luminescent color and directional radiation angle, and reduce the manufacturing cost of LEDs. Photonic crystal LEDs are expected to be a strong candidate for future lighting technology. Finally, the prospects and challenges of PC LEDs are summarized.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3