Effect of Ti‐metal addition on hot‐isostatically pressed (HIPed) Synroc‐C

Author:

Farzana Rifat1ORCID,Dayal Pranesh1ORCID,Peristyy Anton1,Sutton Phillip1,Aly Zaynab1,Aughterson Robert D.1ORCID,Nguyen Thanh Ha1,Yeoh Michelle12,Koshy Pramod2ORCID,Gregg Daniel J.1ORCID

Affiliation:

1. Australian Nuclear Science and Technology Organisation Kirrawee DC New South Wales Australia

2. School of Materials Science and Engineering UNSW Sydney Sydney New South Wales Australia

Abstract

AbstractSynroc, a candidate nuclear wasteform and Synroc technology, a waste treatment solution utilizing hot‐isostatic pressing (HIPing) have significant potential for the immobilisation of challenging nuclear wastes from both current and innovative reactors and fuel cycles. Hot isostatic press (HIP) consolidation is undertaken within sealed metal HIP canisters, where metal buffers (e.g., Ti, Fe and Ni) can be incorporated to control the redox environment within the canister. This study, for the first time, reports the effect of varying Ti‐metal addition (0, 2, 4, and 8 wt.%) on phase formation, microstructural characteristics, and wasteform performance for HIP consolidated Synroc‐C containing 20 wt.% simulated PUREX type (PW‐4b) high level waste. Quantitative X‐ray diffraction analysis, scanning electron microscopy‐energy dispersive X‐ray spectroscopy (EDS) and transmission electron microscopy‐EDS analyses were undertaken for analytical investigations. The chemical durability of the samples was assessed using ASTM C1220‐21 standard test. Hot‐isostatically pressed (HIPed) samples with 0 and 8 wt.% Ti added for redox control produced unfavourable phase formation. However, the HIPed samples with Ti additions of 2 and 4 wt.% as a redox buffer showed the desired phase formation of Synroc‐C without any significant change to the partitioning of waste elements among the phases along with compatible durability results, when compared to previous literature for hot uniaxial pressing (HUPed) or sintered materials.

Publisher

Wiley

Subject

Materials Chemistry,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3