Neutrophil elastase activates the release of extracellular traps from COPD blood monocyte‐derived macrophages

Author:

Zheng Shuo1ORCID,Kummarapurugu Apparao B.1,Bulut Gamze B.1,Syed Aamer2,Kang Le3,Voynow Judith A.1ORCID

Affiliation:

1. Division of Pediatric Pulmonary Medicine Children's Hospital of Richmond at VCU Richmond Virginia USA

2. Division of Pulmonary and Critical Care Medicine Department of Medicine VCU Richmond Virginia USA

3. Department of Biostatistics VCU Richmond Virginia USA

Abstract

AbstractNeutrophil elastase (NE), a major inflammatory mediator in chronic obstructive pulmonary disease (COPD) airways, impairs macrophage function, contributing to persistence of airway inflammation. We hypothesized that NE activates a novel mechanism of macrophage‐induced inflammation: release of macrophage extracellular traps (METs). The METs are composed of extracellular DNA decorated with granule proteinases and oxidants and may trigger persistent airway inflammation in COPD. To test the hypothesis, human blood monocytes were isolated from whole blood of subjects with COPD recruited following informed written consent. Patient demographics and clinical data were collected. Cells were cultured in media with GM‐CSF to differentiate into blood monocyte derived macrophages (BMDMs). The BMDMs were treated with FITC‐NE and unlabeled NE to determine intracellular localization by confocal microscopy and intracellular proteinase activity by DQ‐Elastin assay. After NE exposure, released extracellular traps were quantified by abundance of extracellular DNA in conditioned media using the Pico Green assay. BMDM cell lysates were analyzed by Western analysis for proteolytic degradation of histone H3 or H4 or upregulation of peptidyl arginine deiminase (PAD) 2 and 4, two potential mechanisms to mediate extracellular trap DNA release. We observed that NE was taken up by COPD BMDM, localized to the cytosol and nucleus, and retained proteinase activity in the cell. NE induced MET release at doses as low as 50 nM. NE treatment caused histone H3 clipping but no effect on histone H4 nor PAD 2 or 4 abundance or activity. In summary, NE activated COPD MET release by clipping histone H3, a prerequisite for chromatin decondensation.

Publisher

Wiley

Subject

General Pharmacology, Toxicology and Pharmaceutics,General Biochemistry, Genetics and Molecular Biology,General Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3