Influence of wet foam incorporation on the pore structure and properties of metakaolin‐based porous geopolymers

Author:

Soares Gustavo de Albuquerque1ORCID,Bezerra Breno Parente1,Lima Ícaro Silva2,Innocentini Murilo Daniel de Mello23ORCID,Luz Ana Paula da1ORCID

Affiliation:

1. Graduate Program in Materials Science and Engineering Federal University of São Carlos São Carlos Brazil

2. Course of Chemical Engineering University of Ribeirão Preto Ribeirão Preto Brazil

3. Centre for Regenerative Design and Engineering for a NEt Positive World (RENEW) Department of Architecture and Civil Engineering University of Bath Bath UK

Abstract

AbstractLightweight geopolymers are well‐suited for construction applications, including thermal and acoustic insulation panels and fire‐resistant barriers. Their porous microstructure can be tailored by incorporating gas bubbles into the fresh ceramic mixture. Several factors—such as geopolymer composition, mixing and curing conditions, and the setting behavior of the paste—play a crucial role in bubble retention within the consolidated specimens. This study investigated the processing of porous metakaolin‐based geopolymers prepared with the addition of 5, 7.5, and 10 wt.% of a preformed liquid foam stabilized with xanthan gum. The addition of 0.45 wt.% xanthan gum improved foam stability, ensuring uniform pore distribution and minimizing bubble collapse during processing. This approach enabled the fabrication of specimens with low densities (0.87–1.46 g/cm3) and high porosity (39.49%–64.78%), significant air permeability, and well‐controlled microstructural characteristics, with average pore sizes varying from 99 to 137 µm. Based on the findings, the geopolymeric binder containing 7.5 wt.% foam demonstrated a balance of strength, low density, reduced water absorption, and engineered porosity, making it a promising candidate for sealing components or thermal insulation materials. The direct foaming method and processing conditions effectively enhanced the properties of porous geopolymers, highlighting their potential for advanced construction applications.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3