ASYMPTOTIC RESULTS FOR PERIODIC AUTOREGRESSIVE MOVING‐AVERAGE PROCESSES

Author:

Anderson P. L.,Vecchia A. V.

Abstract

Abstract.This paper is concerned with the derivation of asymptotic distributions for the sample autocovariance and sample autocorrelation functions of periodic autoregressive moving‐average processes, which are useful in modelling periodically stationary time series. In an effort to obtain a parsimonious model representing a periodically stationary time series, the asymptotic properties of the discrete Fourier transform of the estimated periodic autocovariance and autocorrelation functions are presented. Application of the asymptotic results to some specific models indicates their usefulness for model identification analysis.

Publisher

Wiley

Reference15 articles.

1. Anderson P. L.(1989)Asymptotic results and identification for cyclostationary time series. Ph. D. Dissertation Colorado School of Mines Golden Colorado.

2. On the theoretical specification and sampling properties of autocorrelated time series.;Bartlett M. S.;J. R. Statist. Soc.,1946

3. Time Series: Theory and Methods

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Periodic autoregressive models in flow regulating reservoirs design;Journal of Applied Water Engineering and Research;2021-10-26

2. Parsimonious time series modeling for high frequency climate data;Journal of Time Series Analysis;2021-02-02

3. Time series model building with Fourier autoregressive model;South African Statistical Journal;2020-09-30

4. Selected topics and applications;Cyclostationary Processes and Time Series;2020

5. Detection and cycle frequency estimation;Cyclostationary Processes and Time Series;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3