The E3 ubiquitin ligase COP1 regulates salt tolerance via GIGANTEA degradation in roots

Author:

Ji Myung Geun12,Khakurel Dhruba3,Hwang Ji‐Won1,Nguyen Cam Chau1,Nam Byoungwoo1,Shin Gyeong‐Im12,Jeong Song Yi12,Ahn Gyeongik12,Cha Joon‐Yung12,Lee Sung‐Ho34,Park Hee Jin5,Kim Min Gab16,Yun Dae‐Jin7,Rubio Vicente8,Kim Woe‐Yeon12ORCID

Affiliation:

1. Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center, Plant Molecular Biology and Biotechnology Research Center Gyeongsang National University Jinju Republic of Korea

2. Research Institute of Life Science, Institute of Agriculture and Life Sciences Gyeongsang National University Jinju Republic of Korea

3. Department of Biology, Graduate School Gyeongsang National University Jinju Republic of Korea

4. Division of Life Science Gyeongsang National University Jinju Republic of Korea

5. Department of Biological Sciences, College of Natural Sciences Chonnam National University Gwangju Republic of Korea

6. Research Institute of Pharmaceutical Science, College of Pharmacy Gyeongsang National University Jinju Korea

7. Institute of Glocal Disease Control Konkuk University Seoul Republic of Korea

8. Plant Molecular Genetics Department, Centro Nacionalde Biotecnología‐Consejo Superior de Investigaciones Cientificas Campus de la Universidad Autónoma de Madrid, Cantoblanco Madrid Spain

Abstract

AbstractExcess soil salinity significantly impairs plant growth and development. Our previous reports demonstrated that the core circadian clock oscillator GIGANTEA (GI) negatively regulates salt stress tolerance by sequestering the SALT OVERLY SENSITIVE (SOS) 2 kinase, an essential component of the SOS pathway. Salt stress induces calcium‐dependent cytoplasmic GI degradation, resulting in activation of the SOS pathway; however, the precise molecular mechanism governing GI degradation during salt stress remains enigmatic. Here, we demonstrate that salt‐induced calcium signals promote the cytoplasmic partitioning of CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), leading to the 26S proteasome‐dependent degradation of GI exclusively in the roots. Salt stress‐induced calcium signals accelerate the cytoplasmic localization of COP1 in the root cells, which targets GI for 26S proteasomal degradation. Align with this, the interaction between COP1 and GI is only observed in the roots, not the shoots, under salt‐stress conditions. Notably, the gi‐201 cop1‐4 double mutant shows an enhanced tolerance to salt stress similar to gi‐201, indicating that GI is epistatic to COP1 under salt‐stress conditions. Taken together, our study provides critical insights into the molecular mechanisms governing the COP1‐mediated proteasomal degradation of GI for salt stress tolerance, raising new possibilities for developing salt‐tolerant crops.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3