The water content of CM carbonaceous chondrite falls and finds, and their susceptibility to terrestrial contamination

Author:

Lee Martin R.1ORCID,Hallis Lydia J.1ORCID,Daly Luke123ORCID,Boyce Adrian J.4

Affiliation:

1. School of Geographical & Earth Sciences University of Glasgow Glasgow UK

2. Australian Centre for Microscopy and Microanalysis University of Sydney Sydney New South Wales Australia

3. Department of Materials University of Oxford Oxford UK

4. Scottish Universities Environmental Research Centre Glasgow UK

Abstract

AbstractCM carbonaceous chondrites can be used to constrain the abundance and H isotopic composition of water and OH in C‐complex asteroids. Previous measurements of the water/OH content of the CMs are at the higher end of the compositional range of asteroids as determined by remote sensing. One possible explanation is that the indigenous water/OH content of meteorites has been overestimated due to contamination during their time on Earth. Here we have sought to better understand the magnitude and rate of terrestrial contamination through quantifying the concentration and H isotopic composition of telluric and indigenous water in CM falls by stepwise pyrolysis. These measurements have been integrated with published pyrolysis data from CM falls and finds. Once exposed to Earth's atmosphere CM falls are contaminated rapidly, with some acquiring weight percent concentrations of water within days. The amount of water added does not progressively increase with time because CM falls have a similar range of adsorbed water contents to finds. Instead, the petrologic types of CMs strongly influence the amount of terrestrial water that they can acquire. This relationship is probably controlled by mineralogical and/or petrophysical properties of the meteorites that affect their hygroscopicity. Irrespective of the quantity of water that a sample adsorbs or its terrestrial age, there is minimal exchange of H in indigenous phyllosilicates with the terrestrial environment. The falls and finds discussed here contain 1.9–10.5 wt% indigenous water (average 7.0 wt%) that is consistent with recent measurements of C‐complex asteroids including Bennu.

Funder

Natural Environment Research Council

Science and Technology Facilities Council

Publisher

Wiley

Subject

Space and Planetary Science,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3