RhLHY‐RhTPPF‐Tre6P Inhibits Flowering in Rosa hybrida Under Insufficient Light by Regulating Sugar Distribution

Author:

Fan Yingdong12,Zhang Wuhua12,Zhang Jinzhu12,Yang Tao12,Zhang Naiyu12,Liang Shuang12,Dong Jie12,Che Daidi12ORCID

Affiliation:

1. College of Horticulture and Landscape Architecture Northeast Agricultural University Harbin China

2. Key Laboratory of Cold Region Landscape Plants and Applications Harbin China

Abstract

ABSTRACTLight is crucial for flower bud development in plants, serving as both signal and energy source. However, the mechanisms by which daylength and light intensity regulate flowering in modern roses remain unclear. In Rosa hybrida ‘Carola’, insufficient light delays flowering and reduces the sugar content in terminal buds. RNA sequencing identified the Trehalose‐6‐phosphate phosphatase F (RhTPPF) gene as a key responder to insufficient light, modulating Tre6P metabolism. Overexpression of RhTPPF in rose calli enhanced sugar accumulation and suppressed the synthesis of RhCO/FT. In tobacco, overexpression of RhTPPF delayed the transition from vegetative growth to flowering, while silencing RhTPPF in roses accelerated flowering. Silencing RhTPPF in roses elevated trehalose‐6‐phosphate (Tre6P) levels and decreased trehalose. Transcriptome data showed that the expression level of RhTPPF was highly correlated with the circadian rhythm gene LATE ELONGATED HYPOCOTYL (RhLHY). Yeast one‐hybrid assays, dual luciferase assays and EMSA revealed that RhLHY directly binds to the RhTPPF promoters. Overexpression of RhLHY suppressed flowering, while silencing RhLHY promoted flowering. Furthermore, altering the expression of RhLHY influenced Tre6P synthesis and the expression of sucrose‐related transport genes. These findings suggest a RhLHY‐RhTPPF‐Tre6P regulatory module that maintains sugar balance and inhibits flower formation under reduced light conditions by modulating sugar distribution.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3