Hybrid semantic segmentation for tunnel lining cracks based on Swin Transformer and convolutional neural network

Author:

Zhou Zhong12,Zhang Junjie1,Gong Chenjie12

Affiliation:

1. School of Civil Engineering and Hunan Provincial Key Laboratory for Disaster Prevention and Mitigation of Rail Transit Engineering Structure Central South University Changsha P. R. China

2. Hunan Tieyuan Civil Engineering Testing Co., Ltd Changsha P. R. China

Abstract

AbstractIn the field of tunnel lining crack identification, the semantic segmentation algorithms based on convolution neural network (CNN) are extensively used. Owing to the inherent locality of CNN, these algorithms cannot make full use of context semantic information, resulting in difficulty in capturing the global features of crack. Transformer‐based networks can capture global semantic information, but this method also has the deficiencies of strong data dependence and easy loss of local features. In this paper, a hybrid semantic segmentation algorithm for tunnel lining crack, named SCDeepLab, is proposed by fusing Swin Transformer and CNN in the encoding and decoding framework of DeepLabv3+ to address the above issues. In SCDeepLab, a joint backbone network is introduced with CNN‐based Inverse Residual Block and Swin Transformer Block. The former is used to extract the local detailed information of the crack to generate the shallow feature layer, whereas the latter is used to extract the global semantic information to obtain the deep feature layer. In addition, Efficient Channel Attention enhanced Feature Fusion Module is proposed to fuse the shallow and deep features to combine the advantages of the two types of features. Furthermore, the strategy of transfer learning is adopted to solve the data dependency of Swin Transformer. The results show that the mean intersection over union (mIoU) and mean pixel accuracy (mPA) of SCDeepLab on the data sets constructed in this paper are 77.41% and 84.42%, respectively, which have higher segmentation accuracy than previous CNN‐based and transformer‐based semantic segmentation algorithms.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Computational Theory and Mathematics,Computer Graphics and Computer-Aided Design,Computer Science Applications,Civil and Structural Engineering,Building and Construction

Reference80 articles.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3