Unmasking microsatellite deceptiveness and debunking hybridization with SNPs in four marine copepod species of Calanus

Author:

Choquet Marvin12ORCID,Lizano Apollo M.2,Le Moan Alan3ORCID,Ravinet Mark4ORCID,Dhanasiri Anusha K. S.25,Hoarau Galice2

Affiliation:

1. Natural History Museum University of Oslo Oslo Norway

2. Faculty of Biosciences and Aquaculture Nord University Bodø Norway

3. CNRS‐Sorbonne Université Station Biologique de Roscoff Roscoff France

4. School of Life Sciences University of Nottingham Nottingham UK

5. Department of Paraclinical Sciences, Faculty of Veterinary Medicine Norwegian University of Life Sciences (NMBU) Oslo Norway

Abstract

AbstractInterspecific hybridization events are on the rise in natural systems due to climate change disrupting species barriers. Across taxa, microsatellites have long been the molecular markers of choice to identify admixed individuals. However, with the advent of high‐throughput sequencing easing the generation of genome‐wide datasets, incorrect reports of hybridization resulting from microsatellite technical artefacts have been uncovered in a growing number of taxa. In the marine zooplankton genus Calanus (Copepoda), whose species are used as climate change indicators, microsatellite markers have suggested hybridization between C. finmarchicus and C. glacialis, while other nuclear markers (InDels) never detected any admixed individuals, leaving the scientific community divided. Here, for the first time, we investigated the potential for hybridization among C. finmarchicus, C. glacialis, C. helgolandicus and C. hyperboreus using two large and independent SNP datasets. These were derived firstly from a protocol of target‐capture applied to 179 individuals collected from 17 sites across the North Atlantic and Arctic Oceans, including sympatric areas, and second from published RNA sequences. All SNP‐based analyses were congruent in showing that Calanus species are distinct and do not appear to hybridize. We then thoroughly re‐assessed the microsatellites showing hybrids, with the support of published transcriptomes, and identified technical issues plaguing eight out of 10 microsatellites, including size homoplasy, paralogy, potential for null alleles and even two primer pairs targeting the same locus. Our study illustrates how deceptive microsatellites can be when applied to the investigation of hybridization.

Funder

Nord universitet

Publisher

Wiley

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3