A computational model of current control mechanism for long‐term potentiation (LTP) in human episodic memory based on gene–gene interaction

Author:

Tripathi Sudhakar1,Mishra Ravi Bhushan2,Bihari Anand3ORCID,Agrawal Sanjay4,Joshi Puneet4

Affiliation:

1. Department of Information Technology Rajkiya Engineering College Ambedkarnagar Ambedkar Nagar India

2. Departmenmt of Computer Science and Engineering National Institute of Technology Patna Patna India

3. Department of Computational Intelligence, School of Computer Science and Engineering Vellore Institute of Technology Vellore India

4. Department of Electrical Engineering Rajkiya Engineering College Ambedkarnagar Ambedkar Nagar India

Abstract

AbstractThe establishment of long‐term potentiation (LTP) is a prime process for the formation of episodic memory. During the establishment of LTP, activations of various components are required in the signaling cascade of the LTP pathway. Past efforts to determine the activation of components relied extensively on the cellular or molecular level. In this paper, we have proposed a computational model based on gene‐level cascading and interaction in LTP signaling for the establishment and control of current signals for achieving the desired level of activation in the formation of episodic memory. This paper also introduces a model for a generalized signaling pathway in episodic memory. A back‐propagation feedback mechanism is used for updating the interaction levels in the signaling cascade starting from the last stage and ending at the start stage of the signaling cascade. Simulation of the proposed model has been performed for the LTP signaling pathway in the context of human episodic memory. We found through simulation that the qualifying genes correction factors of all stages are updated to their maximum limit. The article explains the signaling pathway for episodic memory and proves its effectiveness through simulation results.

Publisher

Wiley

Subject

General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3