The CXCR4/CXCL12 (SDF-1) signalling pathway protects non-obese diabetic mouse from autoimmune diabetes

Author:

Aboumrad E1,Madec A M1,Thivolet C1

Affiliation:

1. INSERM 449, Faculté Laennec, Lyon, France

Abstract

Summary Chemokines and their receptors are part of polarized T helper 1 (Th1)- and Th2-mediated immune responses which control trafficking of immunogenic cells to sites of inflammation. The chemokine stromal cell-derived factor-1 CXCL-12 (SDF-1) and its ligand the CXCR4 chemokine receptor are important regulatory elements. CXCR4 is expressed on the surface of CD4+ T cells, dendritic cells and B lymphocytes. Levels of CXCR4 mRNA were increased in pancreatic lymph nodes (PLNs) of 4-week-old non-obese diabetic (NOD) mice in comparison to Balb/C mice. However, a significant reduction of CXCR4 was noticed at 12 weeks both at the mRNA and protein levels while expression increased in the inflamed islets. The percentage of SDF-1 attracted splenocytes in a transwell chemotaxis assay was significantly increased in NOD versus Balb/c mice. SDF-1 attracted T cells completely abolished the capacity of diabetogenic T cells to transfer diabetes in the recipients of an adoptive cell co-transfer. When T splenocytes from NOD females treated with AMD3100, a specific CXCR4 antagonist, were mixed with diabetogenic T cells during adoptive cell co-transfer experiments, prevalence of diabetes in the recipients rose from 33% to 75% (P < 0·001). This effect was associated with an increase of interferon (IFN)-γ mRNA and a reduction of interleukin (IL)-4 mRNA levels both in PLNs and isolated islets. AMD3100 also reduced IL-4 and IL-10 production of plate-bound anti-CD3 and anti-CD28-stimulated splenocytes. Immunofluorescence studies indicated that AMD3100 reduced the number of CXCR4+ and SDF-1 positive cells in the inflamed islets. We can conclude that the CXCL-12/CXCR4 pathway has protective effects against autoimmune diabetes.

Publisher

Oxford University Press (OUP)

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3