Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage

Author:

TOKUDA GAKU,LO NATHAN,WATANABE HIROFUMI,ARAKAWA GAKU,MATSUMOTO TADAO,NODA HIROAKI

Abstract

AbstractTermites are among the most important cellulose‐digesting animals on earth, and are well‐known for the symbiotic relationship they have with cellulolytic trichomonad and oxymonad flagellates (unicellular eukaryotes). Perhaps less well‐known is the fact that ∼75% of the ∼2600 described termite species — those belonging to the family Termitidae — do not harbour such flagellates. Unlike most termites from other families, the majority of termitids do not consume wood, feeding instead on soil, leaf litter, fungi, grass, or lichen. Recent years have seen the characterization of the endogenous cellulase enzymes that help termites digest cellulose, from one flagellate‐harbouring species (Reticulitermes speratus), as well as one termitid (Nasutitermes takasagoensis). The genes encoding the enzymes in these two termites are similar. However, their site of expression differs markedly — the salivary glands in R. speratus and the midgut in N. takasagoensis. To investigate this difference further, we performed a comparative study of cellulase expression in various termitid and flagellate‐harbouring species, using enzyme assays and reverse transcription polymerase chain reactions. Taxa from phylogenetically basal lineages were consistently found to express endogenous genes specifically in the salivary glands, whilst those from a relatively apical lineage containing termitids expressed cellulases solely in the midgut. Relatively low levels of cellulase activity were found in nonwood‐feeding species, while the wood‐feeding Coptotermes formosanus— arguably the most destructive pest species world‐wide — was found to have high levels of activity in all parts of the gut when compared to all other termites. In the light of these results, as well as recently accumulated phylogenetic data, we discuss scenarios for the evolution of cellulose digestion in termites.

Publisher

Wiley

Reference46 articles.

1. Symbiosis between Termites and Their Intestinal Protozoa

2. The physiological and symbiotic relationships between the intestinal protozoa of termites and their host, with special reference to Reticulitermes flavipes Kollar;Cleveland LR;Biology Bulletin,1924

3. Gut morphology of Mastotermes darwiniensis Froggatt (Isoptera : Mastotermitidae)

4. Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutitermitinae);Czolij R;Applied and Environmental Microbiology,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3