Not every high‐latitude or high‐elevation forest edge is a treeline

Author:

Körner Christian1ORCID,Hoch Günter1

Affiliation:

1. Department of Environmental Sciences, Botany University of Basel Basel Switzerland

Abstract

AbstractAttempts at identifying climate warming effects on mountain and arctic vegetation caused a recent hype in treeline studies. In this perspectives article, we recall the need of clear‐cut definitions, a consistent terminology and a theoretical framework that permits hypothesis testing. Founded in the ecological niche concept, the application of the fundamental niche edge to treeline permits defining the potential climatic limit of tree growth, while the realized niche edge captures all deviations for reasons related to other, more local, abiotic factors, biotic interactions, disturbances and human interventions. An important point is that a globally common phenomenon calls for a common abiotic driver which is the temperature at the low temperature edge of the niche of the life form tree. We explain why other abiotic factors that may affect the local range limits, such as microclimate, moisture and wind do not devaluate the classical isotherm concept. Our key message is that applying a clearly defined concept of potential treeline, also allows defining deviations from it and explaining the deviations within a reproducible theoretical framework.

Publisher

Wiley

Subject

Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3