Enhancing beer authentication, quality, and control assessment using non‐invasive spectroscopy through bottle and machine learning modeling

Author:

Harris Natalie1,Gonzalez Viejo Claudia1ORCID,Zhang Jiaying1,Pang Alexis1,Hernandez‐Brenes Carmen2ORCID,Fuentes Sigfredo12

Affiliation:

1. Digital Agriculture, Food and Wine Research Group, School of Agriculture, Food and Ecosystem Science, Faculty of Science The University of Melbourne Melbourne Victoria Australia

2. Tecnologico de Monterrey, School of Engineering and Science Monterrey Nuevo Leon México

Abstract

AbstractFraud in alcoholic beverages through counterfeiting and adulteration is rising, significantly impacting companies economically. This study aimed to develop a method using near‐infrared (NIR) spectroscopy (1596–2396 nm) through the bottle, along with machine learning (ML) modeling for beer authentication, quality traits, and control assessment. For this study, 25 commercial beers from different brands, styles, and three types of fermentation were used. To obtain the ground‐truth data, a quantitative descriptive analysis was conducted with 11 trained panelists to evaluate the intensity of 16 sensory descriptors, and volatile aromatic compounds were analyzed using gas chromatography–mass spectroscopy (GC–MS). The ML models were developed using artificial neural networks with NIR absorbance values as inputs to predict (i) type of fermentation (Model 1), (ii) intensity of 16 sensory descriptors (Model 2), and (iii) peak area of volatile aromatic compounds (Model 3). All models resulted in high overall accuracy (Model 1: 99%; Model 2: R = 0.92; Model 3: R = 0.94), and model deployment for new beer samples showed high performance (Model 1: 95%; Model 2: R = 0.83). This method enables brewers and retailers to analyze beers without opening bottles, preventing quality assurance issues, fraud, and provenance concerns. Further model training with new targets could assess additional quality traits like physicochemical parameters and origin.Practical ApplicationNear‐infrared spectroscopy coupled with ML modeling is a novel method for assessing beer quality and authentication through the bottle. It serves as a rapid, accurate tool for predicting sensory and aroma profiles without opening the bottle. Additionally, it monitors quality traits during transport and storage.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3