Correlation among PME activity, viscoelastic, and structural parameters for Carica papaya edible tissue along ripening

Author:

Sanchez Nestor1ORCID,Gutiérrez‐López Gustavo F.2ORCID,Cáez‐Ramírez Gabriela1ORCID

Affiliation:

1. Faculty of Engineering, Grupo de Investigación en Procesos Agroindustriales Universidad de La Sabana Campus Universitario del Puente del Común, Km. 7 Autopista Norte de Bogotá Chía Cundinamarca Colombia

2. Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas Instituto Politécnico Nacional Plan de Ayala y Carpio S/N, CP, 11340, CDM México

Abstract

AbstractPapaya fruit, widely consumed around the world, is mechanically and structurally affected by several enzymatic processes during ripening, where pectin methylesterase plays a key role. Hence, the aim of this work was to evaluate possible correlations among physicochemical changes, mechanical parameters, viscoelastic behavior, and enzyme activity of pectin methylesterase to provide information about the softening phenomenon by applying the Maxwell and Peleg models. Mechanical parameters were estimated by texture profile analysis, enzyme activity by Michaelis–Menten parameters, and viscoelastic behavior by relaxation test responses fitted to these models. The Maxwell model described properly mechanical changes during ripening, displaying a better adjustment (R2 > 0.97) than the Peleg model (0.80 < R2 < 0.84). Pearson correlation analysis (P ≤ 0.01) indicated an inversely proportional relation among firmness, total soluble solids, and the first elastic element of the Maxwell model. Besides, the PME Michaelis–Menten affinity constant showed a correlation between the first elastic element and the first viscoelastic element of the Maxwell model. Findings of this work pointed out that the first Maxwell elastic element could explain structural changes as papaya ripening advance, associated with pectin methylesterase activity, cell wall disruption, and cell assembling into the tissue.Practical ApplicationMechanical and viscoelastic behavior of papaya fruit tissue were described by the Maxwell model associating both viscous and elastic elements to the softening process. The results provide background and practical knowledge to describe structural changes during the ripening process of papaya depending on its enzymatic activity. Outcomes could be further applied to understand changes in other fruits or food matrixes that soften during postharvest, storage, and food chain supply processes.

Funder

Universidad de La Sabana

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3