Optimization of the pulsed vacuum drying process of green walnut husk through temperature adaptive regulation

Author:

Ao Jingfang1,Shen Heyu1,Cai Yingying1,Wang Jun1,Xie Yongkang2,Luo Anwei1ORCID

Affiliation:

1. College of Food Science and Engineering Northwest A&F University Yangling China

2. Henan Academy of Agricultural Sciences Zhengzhou China

Abstract

AbstractThis study aimed to optimize the temperature adaptive conditions of pulsed vacuum drying (PVD) for green walnut husk (GWH) to tackle the issues of severe environmental pollution and limited utilization of GWH. The results of the single‐factor experiment revealed that the optimal drying temperature for PVD of GWH was 65°C, with a pulsed ratio of 9 min: 3 min. The drying time decreased from 10.87 to 6.32 h with increasing drying temperature and from 8.83 to 6.23 kW·h/kg with increasing pulsed ratio. Energy consumption also decreased with shorter drying time and shorter vacuum time. Under this optimal variable temperature drying condition, GWH exhibited the highest total active substance content, with respective values of 9.43 mg/g for total triterpenes, 35.68 mg/g for flavonoids, 9.51 mg/g for polyphenols, and 9.55 mg/g for quinones. The experimental drying data of GWH were best fitted by a logarithmic model, with R2 values ranging from 0.9927 to 0.9943. Furthermore, the observed microstructure of GWH corresponded to the variations in total active substance content. This study provided valuable theoretical guidance for addressing environmental pollution associated with GWH and facilitating the industrialization and refinement of GWH drying processes.Practical ApplicationThere is a growing interest in harnessing the potential value of agricultural waste to transform low‐cost raw materials into high‐value products while mitigating environmental pollution. In this study, for the first time, the effects of variable temperature pulsed vacuum drying on the content of active substances, drying time, and energy consumption of green walnut husk (GWH) were investigated. The findings serve as a theoretical foundation for addressing environmental pollution issues associated with GWH and enabling the industrialization and precision drying of GWH.

Publisher

Wiley

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3