Affiliation:
1. College of Food Science and Engineering Northwest A&F University Yangling China
2. Henan Academy of Agricultural Sciences Zhengzhou China
Abstract
AbstractThis study aimed to optimize the temperature adaptive conditions of pulsed vacuum drying (PVD) for green walnut husk (GWH) to tackle the issues of severe environmental pollution and limited utilization of GWH. The results of the single‐factor experiment revealed that the optimal drying temperature for PVD of GWH was 65°C, with a pulsed ratio of 9 min: 3 min. The drying time decreased from 10.87 to 6.32 h with increasing drying temperature and from 8.83 to 6.23 kW·h/kg with increasing pulsed ratio. Energy consumption also decreased with shorter drying time and shorter vacuum time. Under this optimal variable temperature drying condition, GWH exhibited the highest total active substance content, with respective values of 9.43 mg/g for total triterpenes, 35.68 mg/g for flavonoids, 9.51 mg/g for polyphenols, and 9.55 mg/g for quinones. The experimental drying data of GWH were best fitted by a logarithmic model, with R2 values ranging from 0.9927 to 0.9943. Furthermore, the observed microstructure of GWH corresponded to the variations in total active substance content. This study provided valuable theoretical guidance for addressing environmental pollution associated with GWH and facilitating the industrialization and refinement of GWH drying processes.Practical ApplicationThere is a growing interest in harnessing the potential value of agricultural waste to transform low‐cost raw materials into high‐value products while mitigating environmental pollution. In this study, for the first time, the effects of variable temperature pulsed vacuum drying on the content of active substances, drying time, and energy consumption of green walnut husk (GWH) were investigated. The findings serve as a theoretical foundation for addressing environmental pollution issues associated with GWH and enabling the industrialization and precision drying of GWH.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献