Thermal processing implications on microplastics in rainbow trout fillet

Author:

Alak Gonca1ORCID,Köktürk Mine2,Ucar Arzu3,Parlak Veysel3,Kocaman Esat Mahmut3,Atamanalp Muhammed3

Affiliation:

1. Department of Seafood Technology Faculty of Fisheries Ataturk University Erzurum Turkey

2. Department of Organic Farming School of Applied Science Iğdır University ğdır Turkey

3. Department of Aquaculture Faculty of Fisheries Ataturk University Erzurum Turkey

Abstract

AbstractHeat treatment is an inevitable step in making meat and meat products ready for human consumption. Researches on ready‐to‐eat foods had shown that foods can also contain microplastics (MPs). The source of the presence of MPs in foods is: air, raw materials, food production stages, or plastics used in packaging. This study was carried out to evaluate the possible effects of the sous‐vide (So‐Vc) technique applied in rainbow trout (Oncorhynchus mykiss) fillets at different temperatures and time intervals on MPs degradation or migration mechanisms and the level of uptake by humans. For this purpose, 7 treatment temperature × 3 various cooking times and So‐Vc technique were applied on rainbow trout fillets. Then, in these fillets, MP presence, size, and shape were researched, as well as polymer types and possible levels of MP uptake by humans were determined. In the analyses, 1.27 ± 0.54 MP/g was found in 1 g of fish tissue. Dimensionally, 67% of MPs was detected as <50 µm and 8% of 500–1000 µm. The dominant shape was determined as a fragment, and the color was black. Six polymer types were determined. The results showed that high temperature (> 65°C) applications promoted polymer degradation. MP migration from packaging material to fillets was not detected. By calculations made on these findings, the lowest intake level by a human was estimated as 6140 MPs units/year. The obtained data provided the initial data to explore and optimize the current understanding of thermally processed products in terms of MPs. This study proved that the sous vide method causes polymer degradation at high temperatures and longer time periods.

Publisher

Wiley

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3