Fumonisin B1 induces endoplasmic reticulum damage and inflammation by activating the NXR response and disrupting the normal CYP450 system, leading to liver damage in juvenile quail

Author:

Zhu Lingxin1ORCID,Li Jinhong1,Yang Shuang1,Deng Xiaoqi1,Wang Zhenchao1,Cao Changyu12

Affiliation:

1. College of Life Science and Engineering Foshan University Foshan Guangdong P. R. China

2. Foshan University Veterinary Teaching Hospital Foshan Guangdong P. R. China

Abstract

AbstractFumonisin B1 (FB1) is a mycotoxin affecting animal health through the food chain and has been closely associated with several diseases such as pulmonary edema in pigs and diarrhea in poultry. FB1 is mainly metabolized in the liver. Although a few studies have shown that FB1 causes liver damage, the molecular mechanism of liver damage is unclear. This study aimed to evaluate the role of liver damage, nuclear xenobiotic receptor (NXR) response and cytochrome P450 (CYP450)‐mediated defense response during FB1 exposure. A total of 120 young quails were equally divided into two groups (control and FB1 groups). The quails in the control group were fed on a normal diet, while those in the FB1 group were fed on a quail diet containing 30 mg/kg for 42 days. Histopathological and ultrastructural changes in the liver, biochemical parameters, inflammatory factors, endoplasmic reticulum (ER) factors, NXR response and CYP450 cluster system and other related genes were examined at 14 days, 28 days and 42 days. The results showed that FB1 exposure impaired the metabolic function and caused liver injury. FB1 caused ER stress and decreased adenosine triphosphatease activity, induced the expression of inflammation‐related genes such as interleukin 6 and nuclear factor kappa‐B, and promoted inflammation. In addition, FB1 disrupted the expression of multiple CYP450 isoforms by activating nuclear xenobiotic receptors (NXRs). The present study confirms that FB1 exposure disturbs the homeostasis of cytochrome P450 systems (CYP450s) in quail liver by activating NXR responses and thereby causing liver damage. This study's findings provide insight into the molecular mechanisms of FB1‐induced hepatotoxicity.

Funder

National Key Research and Development Program of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3