Root vascular anatomy predicts maximum growth rates in savanna trees and grasses

Author:

Wargowsky Isabel K.1ORCID,NeSmith Julienne E.1ORCID,Gajjar Niki1,Holdo Ricardo M.12ORCID

Affiliation:

1. Odum School of Ecology University of Georgia Athens Georgia USA

2. School of Animal Plant and Environmental Sciences University of the Witwatersrand Johannesburg South Africa

Abstract

AbstractRoot‐based functional traits are relatively overlooked as drivers of savanna plant community dynamics, an important gap in water‐limited ecosystems. Recent work has shed light on patterns of trait coordination in roots, but less is known about the relationship between root functional traits, water acquisition, and plant demographic rates. Here, we investigated how fine‐root vascular and morphological traits are related in two dominant PFTs (C3 trees and C4 grasses from the savanna biome), whether root traits can predict plant relative growth rate (RGR), and whether root trait multivariate relationships differ in trees and grasses. We used root data from 21 tree and 18 grass species grown under greenhouse conditions, and quantified a suite of vascular and morphological root traits. We used a principal components analysis (PCA) to identify common axes of trait variation, compared trait correlation matrices between the two PFTs, and investigated the relationship between PCA axes and individual traits and RGR. We found that there was no clear single axis integrating vascular and morphological traits, but found that vascular anatomy predicted RGR in both trees and grasses. Trait correlation matrices differed in trees and grasses, suggesting potentially divergent patterns of trait coordination between the two functional types. Our results suggested that, despite differences in trait relationships between trees and grasses, root conductivity may constrain maximum growth rate in both PFTs, highlighting the critical role that water relations play in savanna vegetation dynamics and suggesting that root water transport capacity is an important predictor of plant performance in the savanna biome.

Funder

Division of Environmental Biology

Publisher

Wiley

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3