Flavonoid extracted from Epimedium attenuate cGAS‐STING‐mediated diseases by targeting the formation of functional STING signalosome

Author:

Wang Yan123,Xu Guang4,Wen Jincai23,Zhao Xiaomei23,Zhao Huanying5,Lv Guiji23,Xu Yingjie23,Xiu Ye23,Li Junjie23,Chen Simin23,Yao Qing23,Chen Yuanyuan23,Ma Lina6,Xiao Xiaohe23,Cao Junling17,Bai Zhaofang23ORCID

Affiliation:

1. School of Chinese Materia Medica Beijing University of Chinese Medicine Beijing China

2. Department of Hepatology The Fifth Medical Center of Chinese PLA General Hospital Beijing China

3. Military Institute of Chinese Materia Fifth Medical Center of Chinese PLA General Hospital Beijing China

4. School of Traditional Chinese Medicine Capital Medical University Beijing China

5. Core Facilities Center Capital Medical University Beijing China

6. Department of Pharmacy Dongfang Hospital Affiliated to Beijing University of Chinese Medicine Beijing China

7. Department of Pharmacy Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine Beijing China

Abstract

AbstractHyperactivation of the cyclic‐GMP‐AMP synthase (cGAS)–stimulator of interferon genes (STING) signalling pathway has been shown to be associated with the development of a variety of inflammatory diseases, and the discovery of an inhibitor of the cGAS‐STING signalling pathway holds great promise in the therapeutic interventions. Epimedium flavonoid (EF), a major active ingredient isolated from the medicinal plant Epimedium, has been reported to have good anti‐inflammatory activity, but its exact mechanism of action remains unclear. In the present study, we found that EF in mouse bone marrow‐derived macrophages (BMDMs), THP‐1 (Tohoku Hospital Pediatrics‐1) as well as in human peripheral blood mononuclear cells (hPBMC) inhibited the activation of the cGAS‐STING signalling pathway, which subsequently led to a decrease in the expression of type I interferon (IFN‐β, CXCL10 and ISG15) and pro‐inflammatory cytokines (IL‐6 and TNF‐α). Mechanistically, EF does not affect STING oligomerization, but inhibits the formation of functional STING signalosome by attenuating the interaction of interferon regulatory factor 3 (IRF3) with STING and TANK‐binding kinase 1 (TBK1). Importantly, in vivo experiments, EF has shown promising therapeutic effects on inflammatory diseases mediated by the cGAS‐STING pathway, which include the agonist model induced by DMXAA stimulation, the autoimmune inflammatory disease model induced by three prime repair exonuclease 1 (Trex1) deficiency, and the non‐alcoholic steatohepatitis (NASH) model induced by a pathogenic amino acid and choline deficiency diet (MCD). To summarize, our study suggests that EF is a potent potential inhibitor component of the cGAS‐STING signalling pathway for the treatment of inflammatory diseases mediated by the cGAS‐STING signalling pathway.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3