Integrated evolutionary pattern analyses reveal multiple origins of steroidal saponins in plants

Author:

Li Yi1,Li Zihao1,Zhang Furui1,Li Song1,Gu Yongbing1,Tian Weijun2,Tian Weirong2,Wang Jianbo1ORCID,Wen Jun3,Li Jiaru1ORCID

Affiliation:

1. State Key Laboratory of Hybrid Rice, College of Life Sciences Wuhan University Wuhan 430072 China

2. Yunnan Baotian Agricultural Technology Co., Ltd Kunming 650101 China

3. Department of Botany, National Museum of Natural History Smithsonian Institution Washington 20013‐7012 DC USA

Abstract

SUMMARYSteroidal saponins are a class of specialized metabolites essential for plant's response to biotic and abiotic stresses. They are also important raw materials for the industrial production of steroid drugs. Steroidal saponins are present in some monocots, such as Dioscorea and Paris, but their distribution, origin, and evolution in plants remain poorly understood. By reconstructing the evolutionary history of the steroidal saponin‐associated module (SSAM) in plants, we reveal that the steroidal saponin pathway has its origin in Asparagus and Dioscorea. Through evaluating the distribution and evolutionary pattern of steroidal saponins in angiosperms, we further show that steroidal saponins originated multiple times in angiosperms, and exist in early diverged lineages of certain monocot lineages including Asparagales, Dioscoreales, and Liliales. In these lineages, steroidal saponins are synthesized through the high copy and/or high expression mechanisms of key genes in SSAM. Together with shifts in gene evolutionary rates and amino acid usage, these molecular mechanisms shape the current distribution and diversity of steroidal saponins in plants. Consequently, our results provide new insights into the distribution, diversity and evolutionary history of steroidal saponins in plants, and enhance our understanding of plants' resistance to abiotic and biotic stresses. Additionally, fundamental understanding of the steroidal saponin biosynthesis will facilitate their industrial production and pharmacological applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3