Zebrafish: A smart tool for heart disease research

Author:

Zhang Lantian1,Zhou Jinrun2ORCID

Affiliation:

1. Education Branch, Chongqing Publishing Group Chongqing China

2. Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Science Shandong University Qingdao China

Abstract

AbstractThe increasing prevalence of heart disease poses a significant threat to human survival and safety. However, the current treatments available for heart disease are quite limited. Therefore, it is of great importance to utilize suitable animal models that can accurately simulate the physiological characteristics of heart disease. This would help improve our understanding of this disease and aid in the development of new treatment methods and drugs. Zebrafish hearts not only exhibit similarities to mammalian hearts, but they also share ~70% of homologous genes with humans. Utilizing zebrafish as an alternative to costly and time‐consuming mammalian models offers numerous advantages. Zebrafish models can be easily established and maintained, and compound screening and genetic methods allow for the creation of various economical and easily controlled zebrafish and zebrafish embryonic heart disease models in a short period of time. Consequently, zebrafish have become a powerful tool for exploring the pathological mechanisms of heart disease and identifying new effective genes. In this review, we summarize recent studies on different zebrafish models of heart disease. We also describe the techniques and protocols used to develop zebrafish models of myocardial infarction, heart failure, and congenital heart disease, including surgical procedures, forward and reverse genetics, as well as drug and combination screening. This review aims to promote the utilization of zebrafish models in investigating diverse pathological mechanisms of heart disease, enhancing our knowledge and comprehension of heart disease, and offering novel insights and objectives for exploring the prevention and treatment of heart disease.

Publisher

Wiley

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Aquarium fish and temperature neuropharmacology. Update.;Psychopharmacology & biological narcology;2024-02-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3