Drought risk assessment for early maize growth in Northeast China based on a reconstructed phenological dataset

Author:

Wang Xiaowei12ORCID,Li Xiaoyu3,Ji Lin4,You Songcai3,Shi Yuqing12,Zhu Qichun12,Lou Yunsheng12

Affiliation:

1. Jiangsu Key Laboratory of Agricultural Meteorology Nanjing University of Information Science and Technology Nanjing China

2. School of Ecology and Applied Meteorology Nanjing University of Information Science and Technology Nanjing China

3. Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences Beijing China

4. Department of Atmospheric Sciences Yunnan University Kunming China

Abstract

AbstractDrought is one of the meteorological disasters to which maize is most vulnerable during its seedling stage in Northeast China. The absence of phenological data impedes the precise evaluation of the likelihood of drought during this phase. In response to these issues, this study develops a phenology model and reconstructing the data. Furthermore, it effectively assessed drought risk at the site scale by utilizing drought indicators. Using reconstructed phenological data from 217 sites from 1981 to 2015, we analysed the duration and trends of each phenological period and assessed the spatial and temporal distribution of drought frequency at each growth stage. The study demonstrated that the average date ranges for the sowing, emergence, three‐leaf, and seven‐leaf stages annually were 115–138 days, 130–151 days, 135–160 days, and 150–180 days, respectively. Additionally, there was a significant trend towards earlier dates in all phenological stages. Our research reveals notable fluctuations in drought frequency during various growth stages of early maize in Northeast China. Particularly, the period from the three‐leaf to the seven‐leaf stages emerges as the most drought‐prone, while the initial emergence to three‐leaf stage also shows considerable vulnerability. On average, the frequency of drought events during the critical three‐ to seven‐leaf stage stands at 35%. This average is surpassed in regions like Heilongjiang, northwest Jilin, northern Inner Mongolia, and southwest Liaoning, indicating a heightened risk in these areas. The early maize growth stage drought types are mainly light and moderate drought, with the three‐leaf to seven‐leaf stage, and Heilongjiang and Inner Mongolia, as the key stages and regions of concern, respectively. Identifying the principal types of drought and their occurrence in distinct regions and growth stages is pivotal for averting and reducing disasters.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3