Affiliation:
1. Department of Brain and Cognitive Sciences, University of Rochester
Abstract
A recent report demonstrated that 8-month-olds can segment a continuous stream of speech syllables, containing no acoustic or prosodic cues to word boundaries, into wordlike units after only 2 min of listening experience (Saffran, Aslin, & Newport, 1996). Thus, a powerful learning mechanism capable of extracting statistical information from fluent speech is available early in development. The present study extends these results by documenting the particular type of statistical computation—transitional (conditional) probability—used by infants to solve this word-segmentation task. An artificial language corpus, consisting of a continuous stream of trisyllabic nonsense words, was presented to 8-month-olds for 3 min. A postfamiliarization test compared the infants' responses to words versus part-words (trisyllabic sequences spanning word boundaries). The corpus was constructed so that test words and part-words were matched in frequency, but differed in their transitional probabilities. Infants showed reliable discrimination of words from part-words, thereby demonstrating rapid segmentation of continuous speech into words on the basis of transitional probabilities of syllable pairs.
Cited by
815 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献