Arithmetic problem size modulates brain activations in females but not in males

Author:

Chen Nai‐Feng1,Chang Ting‐Ting12ORCID

Affiliation:

1. Department of Psychology National Chengchi University Taipei Taiwan

2. Research Center for Mind, Brain and Learning National Chengchi University Taipei Taiwan

Abstract

AbstractNumerous empirical studies have reported that males and females perform equally well in mathematical achievement. However, still to date, very limited is understood about the brain response profiles that are particularly characteristic of males and females when solving mathematical problems. The present study aimed to tackle this issue by manipulating arithmetic problem size to investigate functional significance using functional magnetic resonance imaging (fMRI) in young adults. Participants were instructed to complete two runs of simple calculation tasks with either large or small problem sizes. Behavioural results suggested that the performance did not differ between females and males. Neuroimaging data revealed that sex/gender‐related patterns of problem size effect were found in the brain regions that are conventionally associated with arithmetic, including the left middle frontal gyrus (MFG), left intraparietal sulcus (IPS) and insula. Specifically, females demonstrated substantial brain responses of problem size effect in these regions, whereas males showed marginal effects. Moreover, the machine learning method implemented over the brain signal levels within these regions demonstrated that sex/gender is discriminable. These results showed sex/gender effects in the activating patterns varying as a function of the distinct math problem size, even in a simple calculation task. Accordingly, our findings suggested that females and males use two complementary brain resources to achieve equally successful performance levels and highlight the pivotal role of neuroimaging facilities in uncovering neural mechanisms that may not be behaviourally salient.

Funder

National Science Council

Publisher

Wiley

Subject

General Neuroscience

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3