Development of multicomponent glasses for application as a glazing layer on dental zirconia

Author:

Yoleva Albena1,Tasheva Tina1ORCID,Djambazov Stoyan1,Batsova Adriana1

Affiliation:

1. Department of Silicate Technology University of Chemical Technology and Metallurgy Sofia Bulgaria

Abstract

AbstractThis study presents the development of multicomponent glasses for glaze layers for dental yttria‐stabilized tetragonal zirconia (Y‐TZP). The samples were melted in the temperature range of 1 250–1 400°C and were cast in water to obtain a frit. The frits were grounded to a powder with a particle size of less than 40 µm. To study the crystallization tendency of melted glasses, they were thermally treated at 800°C and X‐ray diffraction analyses were performed for both types of samples. The structure of the glasses was investigated by the Fourier‐transform infrared spectroscopy. The thermal expansion coefficient, CTE, the glass‐transition temperature, Tg, and the softening temperature, Ts, were defined. To test the glaze layer on zirconia ceramic, glass powders with different compositions were mixed with modeling fluid and applied on zirconia specimens and then fired at 800°C in a vacuum dental furnace. Scanning electron microscopy, SEM, was used to observe a cross‐section of the glass–ceramic contact on a glazed zirconia ceramic specimen. Glass with the highest content of alkaline oxides is characterized by the closest CTE to zirconium ceramics (10.10−6 K−1), the greatest transparency and good fluidity, and shows good adhesion to the zirconia. The glaze layer is homogeneous without cracks, pores, and crystals.

Publisher

Wiley

Reference35 articles.

1. Contemporary dental ceramic materials, a review: chemical composition, physical and mechanical properties, indications for use;Bajraktarova‐Valjakova E;J Med Sci,2018

2. Zirconia as a dental biomaterial;Della Bona A;Materials,2015

3. Classification and properties of dental zirconia as implant fixtures and superstructures: a review;Ban S;Materials,2021

4. Dental ceramics: a review of new materials and processing methods;Da Silva LH;Braz Oral Res,2017

5. Alumina/zirconia composite implants for potential use in prosthetic applications;Baino F;Int J Mol Sci,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3