Peatland carbon chemistry, amino acids and protein preservation in biogeochemically distinct ecohydrologic layers

Author:

Yusuf Anne Yalien1ORCID,Silvester Ewen2,Brkljaca Robert3,Birnbaum Christina145,Chapman James6,Grover Samantha1

Affiliation:

1. Applied Chemistry and Environmental Science RMIT University Melbourne Australia

2. Research Centre for Applied Alpine Ecology (RCAAE), School of Agriculture, Biomedicine and Environment (SABE) La Trobe University Wodonga Australia

3. Monash Biomedical Imaging Monash University Clayton Australia

4. School of Agriculture and Environmental Science The University of Southern Queensland Toowoomba Australia

5. Center for Crop Health The University of Southern Queensland Toowoomba Australia

6. School of Environment and Science Griffith University Nathan Australia

Abstract

AbstractPeatlands play a significant role in global carbon and nitrogen cycles due to their carbon storage capabilities. However, there are key knowledge gaps in our understanding of how peatland hydrology influences the biogeochemical properties that drive peatland functioning and health. This study examines peatland hydrology and biogeochemical dynamics by exploring the variations in carbon chemistry, total amino acid (‘protein’) content and amino acid composition in the ecohydrologic layers: acrotelm, mesotelm and catotelm. The dynamic movement of the water table recorded half‐hourly over 4 years was used to assist in identifying the boundaries between these layers. Peat amino acids were measured using liquid chromatography‐tandem mass spectrometry (LC‐MS/MS). Carbon chemistry was analysed by solid state Cross Polarization Magic Angle Spinning (CPMAS) 13C Nuclear Magnetic Resonance (NMR) spectroscopy, with the alkyl:O‐alkyl ratio used to quantify the extent of decomposition. Our result revealed a strong positive correlation between the extent of decomposition and total protein content, indicating selective preservation of proteinaceous materials during peat decomposition. Each ecohydrologic layer displayed a distinct amino acid composition and carbon functional group composition. The acrotelm was relatively enriched in seven amino acids and two carbon functional groups. The mesotelm was relatively enriched in four amino acids, while the catotelm was relatively enriched in three amino acids and four carbon functional groups. The variations in amino acid composition reflect differences in microbial function and efficiency, while variations in carbon functional groups provide insights into long‐term carbon sequestration in peatland. Collectively, these results provide more insights into nutrient cycling and changes in organic matter composition during peat decomposition. These findings demonstrate that peatland biogeochemistry is closely linked to ecohydrology and suggest that changes to water table dynamics could affect the ability of peatlands to sequester and store carbon in the future.

Funder

RMIT University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3