Substantial contribution of inorganic carbon sources to CO2 emissions in calcareous vineyard soils in Germany

Author:

Islam Muhammad1ORCID,Wehrle Ralf2,Pätzold Stefan2,Brüggemann Nicolas1

Affiliation:

1. Institute of Bio‐ and Geosciences, Agrosphere (IGB‐3) Forschungszentrum Jülich GmbH Jülich Germany

2. Institute of Crop Science and Resource Conservation (INRES), Soil Science and Soil Ecology University of Bonn Bonn Germany

Abstract

AbstractIn light of climate change and increasing global temperatures, it is important to equally prioritize the study of inorganic carbon dynamics in calcareous soils within temperate ecosystems, as has been done for arid or semiarid environments. A significant area of vineyards in Germany is established on calcareous soils. However, the potential influence of inorganic carbon on CO2 emissions in these vineyards has not been sufficiently explored when evaluating the carbon footprint of management practices in relation to carbon storage. Therefore, we aimed to differentiate between organic and inorganic sources of CO2 emissions from six vineyard soils located in the southwest of Germany that had previously received organic soil amendments (OA). Inorganic carbon content varied between 8 and 55 g kg−1 across different sites, with variations observed in the inorganic‐to‐organic carbon ratio. Soil samples were incubated under standard laboratory conditions for 48 h, and the source of emitted CO2 was determined using a two‐end‐member mixing model. The contribution of inorganic carbon to CO2 emissions was influenced by the quantity of inorganic carbon, with an increase in contribution with increasing inorganic‐to‐organic carbon ratio. On average, abiotic sources accounted for 5% to 40% of the emitted CO2 at the different sites, with one site showing no significant contribution of inorganic carbon. CO2 production from inorganic carbon was higher in the subsoil compared with the topsoil, likely related to the higher content of inorganic carbon in the subsoil. Notably, there was no discernible influence of OA on carbonate dissolution. This study emphasizes the significance of considering abiotic sources of CO2 emissions in addition to soil respiration in calcareous soils and highlights the need for further investigation to apply these findings at the field scale.

Funder

Bundesministerium für Ernährung und Landwirtschaft

Bundesanstalt für Landwirtschaft und Ernährung

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3