Alpha‐synuclein‐associated changes in PINK1‐PRKN‐mediated mitophagy are disease context dependent

Author:

Hou Xu1ORCID,Chen Taylor Hsuan‐Yu1,Koga Shunsuke1ORCID,Bredenberg Jenny M.1,Faroqi Ayman H.12,Delenclos Marion1,Bu Guojun12,Wszolek Zbigniew K.3,Carr Jonathan A.4,Ross Owen A.12,McLean Pamela J.12,Murray Melissa E.12,Dickson Dennis W.12,Fiesel Fabienne C.12,Springer Wolfdieter12

Affiliation:

1. Department of Neuroscience Mayo Clinic Jacksonville Florida USA

2. Neuroscience PhD Program Mayo Clinic Graduate School of Biomedical Sciences Jacksonville Florida USA

3. Department of Neurology Mayo Clinic Jacksonville Florida USA

4. Division of Neurology, Department of Medicine, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa

Abstract

AbstractAlpha‐synuclein (αsyn) aggregates are pathological features of several neurodegenerative conditions including Parkinson disease (PD), dementia with Lewy bodies, and multiple system atrophy (MSA). Accumulating evidence suggests that mitochondrial dysfunction and impairments of the autophagic‐lysosomal system can contribute to the deposition of αsyn, which in turn may interfere with health and function of these organelles in a potentially vicious cycle. Here we investigated a potential convergence of αsyn with the PINK1‐PRKN‐mediated mitochondrial autophagy pathway in cell models, αsyn transgenic mice, and human autopsy brain. PINK1 and PRKN identify and selectively label damaged mitochondria with phosphorylated ubiquitin (pS65‐Ub) to mark them for degradation (mitophagy). We found that disease‐causing multiplications of αsyn resulted in accumulation of the ubiquitin ligase PRKN in cells. This effect could be normalized by starvation‐induced autophagy activation and by CRISPR/Cas9‐mediated αsyn knockout. Upon acute mitochondrial damage, the increased levels of PRKN protein contributed to an enhanced pS65‐Ub response. We further confirmed increased pS65‐Ub‐immunopositive signals in mouse brain with αsyn overexpression and in postmortem human disease brain. Of note, increased pS65‐Ub was associated with neuronal Lewy body‐type αsyn pathology, but not glial cytoplasmic inclusions of αsyn as seen in MSA. While our results add another layer of complexity to the crosstalk between αsyn and the PINK1‐PRKN pathway, distinct mechanisms may underlie in cells and brain tissue despite similar outcomes. Notwithstanding, our finding suggests that pS65‐Ub may be useful as a biomarker to discriminate different synucleinopathies and may serve as a potential therapeutic target for Lewy body disease.

Funder

Alzheimer's Association

Congressionally Directed Medical Research Programs

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

Neurology (clinical),Pathology and Forensic Medicine,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3