A causal trait model for explaining foliar water uptake capacity

Author:

Matos Ilaíne Silveira12ORCID,Rifai Sami Walid2ORCID,Gouveia Walquíria Felipe1,Oliveras Imma34ORCID,Mantuano Dulce5ORCID,Rosado Bruno H. P.1ORCID

Affiliation:

1. Plant Ecology Lab, Department of Ecology, IBRAG Universidade Do Estado Do Rio de Janeiro (UERJ) Rio de Janeiro Brazil

2. School of Biological Sciences The University of Adelaide Adelaide South Australia Australia

3. UMR AMAP ‐ botAnique et Modélisation de l'Architecture Des Plantes et Des végétations, UM, CIRAD, IRD, INRAE, CNRS Montpellier France

4. Environmental Change Institute, School of Geography and the Environment University of Oxford Oxford UK

5. Plant Ecophysiology Lab Universidade Federal do Rio de Janeiro (UFRJ) Rio de Janeiro Brazil

Abstract

AbstractQuestionsPlants largely vary in their capacity for foliar water uptake (FWU), that is, the capacity to increase leaf water content by directly absorbing water from leaf‐wetting events. Climate change will reduce leaf wetting and increase drought events. Therefore, we need a better understanding of the underlying traits and mechanisms that facilitate FWU.LocationSeasonally dry tropical montane grasslands in Brazil (Campos de Altitude).MethodsWe measured FWU and leaf traits related to wettability, surface conductance, water potential and water storage on up to 55 plant species. By using Direct Acyclic Graph theory and Bayesian modelling, we tested how those leaf traits affect FWU.ResultsWe found that stomatal conductance largely explained interspecific variation in FWU, which was also favoured in species with hydrophilic leaves, high cuticular conductance, more negative leaf water potentials, low dry‐matter content, isohydric behaviour, and more elastic cell walls.ConclusionsDue to the existence of trade‐offs, not all species exhibit an optimal combination of traits that favours FWU. Instead, co‐occurring species have achieved a similar capacity for FWU through distinct trait combinations. Consequently, species engaged in FWU may exhibit differential vulnerabilities to climate change as they can cope with drought using other strategies beside FWU.

Funder

Rufford Foundation

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3