Circumventing glioblastoma resistance to temozolomide through optimal drug combinations designed by systems pharmacology and machine learning

Author:

Corridore Sergio1,Verreault Maïté2,Martin Hugo13,Delobel Thibault1,Carrère Cécile4,Idbaih Ahmed2,Ballesta Annabelle1

Affiliation:

1. INSERM Unit 1331, Institut Curie, PSL Research University, CBIO‐Center for Computational Biology, Mines Paris, Cancer Systems Pharmacology team Saint Cloud France

2. AP‐HP, Institut du Cerveau ‐ Paris Brain Institute ‐ ICM, Inserm, CNRS, Hôpitaux Universitaires La Pitié Salpêtrière ‐ Charles Foix, DMU Neurosciences, Service de Neuro‐Oncologie‐Institut de Neurologie Sorbonne Université Paris France

3. University of Rennes EHESP, CNRS, Inserm, Arènes ‐ UMR 6051, RSMS ‐ U 1309 Rennes France

4. Institut Denis Poisson Université d'Orléans, CNRS Orléans France

Abstract

Background and PurposeGlioblastoma (GBM), the most frequent and aggressive brain tumour in adults, is associated with a dismal prognostic despite intensive treatment involving surgery, radiotherapy and temozolomide (TMZ)‐based chemotherapy. The initial or acquired resistance of GBM to TMZ appeals for precision medicine approaches to the design of novel efficient combination pharmacotherapies. Such investigation needs to account for the overexpression of the O6‐methylguanine‐DNA methyl‐transferase (MGMT) repair enzyme which is responsible for TMZ resistance in patients.Experimental ApproachA comprehensive approach combining quantitative systems pharmacology (QSP) models and machine learning (ML) was undertaken to design TMZ‐based drug combinations circumventing the initial resistance to the alkylating agent.Key ResultsA QSP model representing TMZ cellular pharmacokinetics‐pharmacodynamics and dysregulated pathways in GBM was developed and validated using multi‐type time‐ and dose‐resolved datasets, available in control or MGMT‐overexpressing cells. In silico drug screening and subsequent experimental validation identified a strategy to re‐sensitise TMZ‐resistant cells consisting in combining TMZ with inhibitors of the base excision repair and of homologous recombination. Using ML, functional signatures of response to such optimal multi‐agent therapy were derived to assist decision‐making in patients.Conclusion and ImplicationsWe successfully demonstrated the relevance of combined QSP and ML to design efficient drug combinations re‐sensitising glioblastoma cells initially resistant to TMZ. The developed framework may further serve to identify personalised therapies and administration schedules by extending it to account for additional patient‐specific altered pathways and whole‐body features.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3