Stomatal conductance reduction tradeoffs in maize leaves: A theoretical study

Author:

Srivastava Antriksh1,Srinivasan Venkatraman12ORCID,Long Stephen P.3456ORCID

Affiliation:

1. Department of Civil Engineering Indian Institute of Technology Madras Chennai India

2. School of Sustainability Indian Institute of Technology Madras Chennai India

3. The Carl R. Woese Institute for Genomic Biology University of Illinois at Urbana Champaign Champaign Illinois USA

4. Department of Crop Sciences University of Illinois Urbana Champaign Champaign Illinois USA

5. Department of Plant Biology University of Illinois Urbana Champaign Champaign Illinois USA

6. Lancaster Environment Centre Lancaster University Lancaster UK

Abstract

AbstractAs the leading global grain crop, maize significantly impacts agricultural water usage. Presently, photosynthesis () in leaves of modern maize crops is saturated with , implying that reducing stomatal conductance () would not affect but reduce transpiration (), thereby increasing water use efficiency (WUE). While reduction benefits upper canopy leaves under optimal conditions, the tradeoffs in low light and nitrogen‐deficient leaves under nonoptimal microenvironments remain unexplored. Moreover, reduction increases leaf temperature () and water vapor pressure deficit, partially counteracting transpiratory water savings. Therefore, the overall impact of reduction on water savings remains unclear. Here, we use a process‐based leaf model to investigate the benefits of reduced in maize leaves under different microenvironments. Our findings show that increases in due to reduction can diminish WUE gains by up to 20%. However, reduction still results in beneficial WUE tradeoffs, where a 29% decrease in in upper canopy leaves results in a 28% WUE gain without loss in . Lower canopy leaves exhibit superior tradeoffs in reduction with 178% gains in WUE without loss in . Our simulations show that these WUE benefits are resilient to climate change.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3