CsHLS1‐CsSCL28 module regulates compact plant architecture in cucumber

Author:

Wang Chunhua12,Li Jie12,Fang Kai12,Yao Hongxin12,Chai Xingwen12,Du Yalin12,Wang Junwei12,Hao Ning12,Cao Jiajian12,Li Baohai3ORCID,Wu Tao12ORCID

Affiliation:

1. College of Horticulture/Yuelushan Lab/Whampoa Innovation Research Institute Hunan Agricultural University Changsha Hunan China

2. Key Laboratory for Evaluation and Utilization of Gene Resources of Horticultural Crops (Vegetables, Tea, etc.), Ministry of Agriculture and Rural Affairs of China Changsha China

3. MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science Zhejiang University Hangzhou China

Abstract

SummaryIncreased planting densities boost crop yields. A compact plant architecture facilitates dense planting. However, the mechanisms regulating compact plant architecture in cucurbits remain unclear. In this study, we identified a cucumber (Cucumis sativus) compact plant architecture (cpa1) mutant from an ethyl methane sulfonate (EMS)‐mutagenized library that exhibited distinctive phenotypic traits, including reduced leaf petiole angle and leaf size. The candidate mutation causes a premature stop codon in CsaV3_1G036420, which shares similarity to Arabidopsis HOOKLESS 1 (HLS1) encoding putative histone N‐acetyltransferase (HAT) protein and was named CsHLS1. Consistent with the mutant phenotype, CsHLS1 was predominantly expressed in leaf petiole bases and leaves. Constitutive overexpressing CsHLS1 in cpa1 restored the wild‐type plant architecture. Knockout of CsHLS1 resulted in reduces leaf petiole angle and leaf size and as well as decreased acetylation levels. Furthermore, CsHLS1 directly interacted with CsSCL28 and negatively regulated compact plant architecture in cucumber. Importantly, CsHLS1 knockout increased the photosynthesis rate and leaf nitrogen in cucumbers, thereby maintaining cucumber yield at normal density. Overall, our research provides valuable genetic breeding resource and gene target for creating a compact plant architecture for dense cucumber planting.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3