Quantified T1 As An Adjunct To Apparent Diffusion Coefficient For Early Infarct Detection: A High-Field Magnetic Resonance Study in a Rat Stroke Model

Author:

Kaur J.1,Tuor U. I.12,Zhao Z.1,Petersen J.1,Jin A. Y.1,Barber P. A.1

Affiliation:

1. Department of Clinical Neurosciences, Experimental Imaging Centre and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, AB, Canada

2. MR Technology, IBD (West), NRC, Calgary, AB, Canada Conflict of interest: None

Abstract

Background Thrombolytic treatment for acute stroke has focused attention on accurate identification of injured vs. salvageable brain tissue, particularly if reperfusion occurs. However, our knowledge of differences in acute magnetic resonance imaging changes between transient and permanent ischemia and how they reflect permanently damaged tissue remain incomplete. Aims and/or hypothesis Magnetic resonance imaging characteristics vary widely following ischemia and, at acute times, T1, T2 or apparent diffusion coefficient quantification may differentiate viable tissue from that destined to infarct. Methods High-resolution magnetic resonance imaging was performed at 9·4T following permanent or transient (90 min) middle cerebral artery occlusion in spontaneously hypertensive male rats or Wistar rats. Within 30 min, quantified maps of the apparent diffusion coefficient, T1, and T2 were performed and measures determined for sequences in the infarct and compared with that in the contralateral region. Lesion area for each magnetic resonance imaging sequence (T1, T2, apparent diffusion coefficient, and perfusion maps) was delineated for different time points using quantitative threshold measures and compared with final histological damage. Results Early extensive changes in T1 following both transient and permanent middle cerebral artery occlusion provided a sensitive early indicator of the final infarct area. Following reperfusion, small but measurable early T2 changes indicative of early development of vasogenic edema occurred in the transient but not permanent groups. In transient middle cerebral artery occlusion, at 70 min apparent diffusion coefficient decreased ( P<0·001) and then pseudonormalized at 150 min. In permanent middle cerebral artery occlusion, apparent diffusion coefficient declined over time. Lesion area detected using T1 maps exceeded that with T2 and apparent diffusion coefficient at 70 and 150 min in both groups ( P<0·001). Conclusions The results indicate that, independent of reperfusion, quantified T1 is superior for detecting early ischemic changes that are not necessarily detected with T2 or apparent diffusion coefficient.

Publisher

SAGE Publications

Subject

Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3