Weak texture remote sensing image matching based on hybrid domain features and adaptive description method

Author:

Yang Wupeng1,Yao Yongxiang1,Zhang Yongjun1ORCID,Wan Yi1

Affiliation:

1. School of Remote Sensing and Information Engineering Wuhan University Wuhan China

Abstract

AbstractWeak texture remote sensing image (WTRSI) has characteristics such as low reflectivity, high similarity of neighbouring pixels and insignificant differences between regions. These factors cause difficulties in feature extraction and description, which lead to unsuccessful matching. Therefore, this paper proposes a novel hybrid‐domain features and adaptive description (HFAD) approach to perform WTRSI matching. This approach mainly provides two contributions: (1) a new feature extractor that combines both the spatial domain scale space and the frequency domain scale space is established, where a weighted least square filter combined with a phase consistency filter is used to establish the frequency domain scale space; and (2) a new log‐polar descriptor of adaptive neighbourhood (LDAN) is established, where the neighbourhood window size of each descriptor is calculated according to the log‐normalised intensity value of feature points. This article prepares some remote sensing images under weak texture scenes which include deserts, dense forests, waters, ice and snow, and shadows. The data set contains 50 typical image pairs, on which the proposed HFAD was demonstrated and compared with state‐of‐the‐art matching algorithms (RIFT, HOWP, KAZE, POS‐SIFT and SIFT). The statistical results of the comparative experiment show that the HFAD can achieve the accuracy of matching within two pixels and confirm that the proposed algorithm is robust and effective.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Earth and Planetary Sciences (miscellaneous),Computers in Earth Sciences,Computer Science Applications,Engineering (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-Scale Block Bundle Adjustment of LROC NAC Images for Lunar South Pole Mapping Based on Topographic Constraint;IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3