A photogrammetric approach for real‐time visual SLAM applied to an omnidirectional system

Author:

Garcia Thaisa Aline Correia1ORCID,Tommaselli Antonio Maria Garcia1ORCID,Castanheiro Letícia Ferrari1ORCID,Campos Mariana Batista2ORCID

Affiliation:

1. São Paulo State University (Unesp) Presidente Prudente Brazil

2. Finnish Geospatial Research Institute—FGI Espoo Finland

Abstract

AbstractThe problem of sequential estimation of the exterior orientation of imaging sensors and the three‐dimensional environment reconstruction in real time is commonly known as visual simultaneous localisation and mapping (vSLAM). Omnidirectional optical sensors have been increasingly used in vSLAM solutions, mainly for providing a wider view of the scene, allowing the extraction of more features. However, dealing with unmodelled points in the hyperhemispherical field poses challenges, mainly due to the complex lens geometry entailed in the image formation process. To address these challenges, the use of rigorous photogrammetric models that appropriately handle the geometry of fisheye lens cameras can overcome these challenges. Thus, this study presents a real‐time vSLAM approach for omnidirectional systems adapting ORB‐SLAM with a rigorous projection model (equisolid‐angle). The implementation was conducted on the Nvidia Jetson TX2 board, and the approach was evaluated using hyperhemispherical images captured by a dual‐fisheye camera (Ricoh Theta S) embedded into a mobile backpack platform. The trajectory covered a distance of 140 m, with the approach demonstrating accuracy better than 0.12 m at the beginning and achieving metre‐level accuracy at the end of the trajectory. Additionally, we compared the performance of our proposed approach with a generic model for fisheye lens cameras.

Funder

Academy of Finland

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Catadioptric omnidirectional thermal odometry in dynamic environment;ISPRS Journal of Photogrammetry and Remote Sensing;2024-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3