Glial activation in pain and emotional processing regions in the nitroglycerin mouse model of chronic migraine

Author:

Cropper Haley C.1,Conway Catherine M.1,Wyche Whitney1,Pradhan Amynah A.12ORCID

Affiliation:

1. Department of Psychiatry University of Illinois at Chicago Chicago Illinois USA

2. Center for Clinical Pharmacology, Department of Anesthesiology Washington University School of Medicine St. Louis Missouri USA

Abstract

AbstractObjectiveOur aim was to survey astrocyte and microglial activation across four brain regions in a mouse model of chronic migraine.BackgroundChronic migraine is a leading cause of disability, with higher rates in females. The role of central nervous system neurons and glia in migraine pathophysiology is not fully elucidated. Preclinical studies have shown abnormal glial activation in the trigeminal nucleus caudalis of male rodents. No current reports have investigated glial activation in both sexes in other important brain regions involved with the nociceptive and emotional processing of pain.MethodsThe mouse nitroglycerin model of migraine was used, and nitroglycerin (10 mg/kg) or vehicle was administered every other day for 9 days. Prior to injections on days 1, 5, and 9, cephalic allodynia was determined by periorbital von Frey hair testing. Immunofluorescent staining of astrocyte marker, glial fibrillary protein (GFAP), and microglial marker, ionized calcium binding adaptor molecule 1 (Iba1), in male and female trigeminal nucleus caudalis, periaqueductal gray, somatosensory cortex, and nucleus accumbens was completed.ResultsBehavioral testing demonstrated increased cephalic allodynia in nitroglycerin‐ versus vehicle‐treated mice. An increase in the percent area covered by GFAP+ cells in the trigeminal nucleus caudalis and nucleus accumbens, but not the periaqueductal gray or somatosensory cortex, was observed in response to nitroglycerin. No significant differences were observed for Iba1 staining across brain regions. We did not detect significant sex differences in GFAP or Iba1 quantification.ConclusionsImmunohistochemical analysis suggests that, at the time point tested, immunoreactivity of GFAP+ astrocytes, but not Iba1+ microglia, changes in response to chronic migraine‐associated pain. Additionally, there do not appear to be significant differences between males and females in GFAP+ or Iba1+ cells across the four brain regions analyzed.

Funder

National Institute of Neurological Disorders and Stroke

National Institute on Drug Abuse

National Institute of Mental Health

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3