SNORA73B promotes endometrial cancer progression through targeting MIB1 and regulating host gene RCC1 alternative splicing

Author:

Chen Xi1,Li Qian‐hui1,Xie Bu‐min1,Ji Yu‐meng1,Han Yang1,Zhao Yang1ORCID

Affiliation:

1. Department of Obstetrics and Gynecology, Department of Gynecologic Oncology Research Office, Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China

Abstract

AbstractEndometrial cancer (EC) is a common gynaecological malignant tumour with unclear pathogenesis. Small nucleolar RNA (snoRNA) is involved in many biological processes, including those of cancers. Using the Cancer Genome Atlas (TCGA) database, the expression pattern of a snoRNA, SNORA73B, was analysed. The biological functions of SNORA73B were assessed by in vitro proliferation, apoptosis, migration, and invasion assays and in vivo by the xenograft model. RNA sequencing (RNA‐seq) and RNA immunoprecipitation assays were performed to determine the relationship between SNORA73B and its target genes. High‐performance liquid chromatography (HPLC) was performed to detect the pseudouridine content of the mindbomb E3 ubiquitin protein ligase 1 gene (MIB1). The stability of MIB1 mRNA was evaluated using a transcription inhibitor, actinomycin D. By performing co‐immunoprecipitation assays, the change in the ubiquitin levels of the Jagged canonical Notch ligand 1 (Jag 1), caused by SNORA73B and MIB1, was identified. RNA‐seq and qRT‐PCR were performed to detect the alternative splicing of the regulator of the chromosome condensation 1 gene (RCC1). The TCGA database analysis showed that SNORA73B was highly expressed in EC. SNORA73B promoted cell proliferation, migration, and invasion and inhibited apoptosis. SNORA73B modified the pseudouridine content in MIB1 and increased the stability of MIB1 mRNA and protein; thus, it affected Jag 1 ubiquitination and further activated the Notch pathway. SNORA73B also affected the alternative splicing of RCC1, increasing the number of transcripts, RCC1‐T2 and RCC1‐T3, which promoted cell proliferation, migration, and invasion. SNORA73B can be a potential target for EC.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Project for Key Medicine Discipline Construction of Guangzhou Municipality

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3