SMAD4 regulates the progression of cholangiocarcinoma by modulating the expression of STING1

Author:

Shi An‐da1ORCID,Zhao Li‐ming1,Sheng Guo‐li1,Zhang Ge‐ning2,Tang Yong‐chang1,Li Kang‐shuai1,Zhang Zong‐li1ORCID

Affiliation:

1. Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan China

2. Master of Public Health The University of Queensland Brisbane Queensland Australia

Abstract

AbstractSMAD4 is a tumour suppressor and an important regulator of tumour immune scape which is downregulated in cholangiocarcinoma (CCA). STING1 is a vital sensing factor of abnormal DNA; however, the correlation between SMAD4 and STING1 and the role of the SMAD4‐STING1 interaction in the progression of CCA have not yet been evaluated. Public database was analysed to reveal the expression of SMAD4 and STING1. A cohort comprising 50 iCCA, 113 pCCA and 119 dCCA patients was assembled for the study. Immunohistochemistry was employed to evaluate the expression levels of STING1 and SMAD4. In vitro transwell and CCK8 assays, along with luciferase reporter assay, were conducted to analyse the potential regulatory mechanisms of SMAD4 on the expression of STING1. Expression of SMAD4 and STING1 were downregulated in CCA tumours and STING1 expression correlated with SMAD4 expression. The overexpression of SMAD4 was found to suppress the migration, invasion and proliferation capabilities of CCA cells; whereas, the knockdown of SMAD4 enhanced these abilities. Furthermore, it was observed that SMAD4 translocated into the nucleus following TGF‐β1 stimulation. Knockdown of SMAD4 resulted in the inhibition of STING1 transcriptional activity, whereas the overexpression of SMAD4 promoted the transcriptional activity of STING1. Clinically, low STING1 and SMAD4 expression indicated poor prognosis in CCA, and simultaneously low expression of STING1 and SMAD4 predicts poorer patient survival. SMAD4 regulates the expression of STING1 through its transcription regulating function. Dual low expression of STING1 and SMAD4 had more power in predicting patient survival. These results indicate that SMAD4‐silenced CCA may downregulate its STING1 expression to adapt to the immune system.

Funder

Key Technology Research and Development Program of Shandong

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3