SPI1 involvement in malignant melanoma pathogenesis by regulation of HK2 through the AKT1/mTOR pathway

Author:

Liu Chunlei1,Qiu Xiujuan2,Gao Jun3,Gong Zhifan1,Zhou Xiaogang1,Luo Haichao2,Geng Xuerui1ORCID

Affiliation:

1. Department of dermatology Xiangyang No.1 People's Hospital, Hubei University of Medicine Xiangyang China

2. Department of oncology Xiangyang No.1 People's Hospital, Hubei University of Medicine Xiangyang China

3. Department of general surgury Xiangyang No.1 People's Hospital, Hubei University of Medicine Xiangyang China

Abstract

AbstractSpi‐1 proto‐oncogene (SPI1) plays a vital role in carcinogenesis. Our work aimed to investigate the potential regulatory mechanism of SPI1 in melanoma. The mRNA and protein levels were measured via qRT–PCR and Western blotting. Cell viability was assessed by CCK‐8 assay. The target relationship between SPI1 and hexokinase 2 (HK2) was determined using dual‐luciferase reporter detection. ChIP was conducted to confirm the targeted relationship between SPI1 and the HK2 promoter. Immunohistochemistry analysis was conducted to measure the positive cell number of SPI1 and HK2 in melanoma tissues. The cell migration abilities were determined using a wound healing assay. Glucose consumption, pyruvate dehydrogenase activity, lactate production and ATP levels were measured to assess glycolysis. SPI1 transcription in melanoma cells and tissues was dramatically higher than that in adjacent normal tissues and epidermal melanocyte HEMa‐LP, respectively. Knockdown of SPI1 restrained cell viability, metastasis and glycolysis in melanoma cells. SPI1 directly targeted HK2, and knockdown of SPI1 repressed HK2 expression. Overexpression of HK2 weakened the inhibitory effects of SPI1 knockdown on the viability, metastasis and glycolysis of melanoma cells. The serine–threonine kinase 1 (AKT1)/mammalian target of rapamycin (mTOR) axis is involved in melanoma progression. SPI1 knockdown restrained melanoma cell proliferation, metastasis and glycolysis by regulating the AKT1/mTOR pathway.

Publisher

Wiley

Subject

Cell Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3