Transcriptome analysis reveals the fruit color variation in Ailanthus altissima

Author:

Ma Yaping12ORCID,Devi Mura Jyostna34,Feng Xuerui1,Li Yunmao1,Song Lihua1,Gao Handong25,Cao Bing1

Affiliation:

1. School of Agriculture Ningxia University Yinchuan China

2. College of Forestry Co‐Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University Nanjing China

3. USDA‐ARS Vegetable Crops Research Unit Madison Wisconsin USA

4. Department of Horticulture University of Wisconsin‐Madison Madison Wisconsin USA

5. Southern Tree Seed Inspection Center Nanjing China

Abstract

AbstractAnthocyanins are responsible for the intensity of color in plants; however, the systematic mechanisms underlying the color differences in the fruit of Ailanthus altissima remain unknown. Therefore, this study aims to analyze the transcriptomes of the white and red fruit of A. altissima by screening and validating the key genes involved in flavonoid and anthocyanin biosynthesis. Samples of A. altissima fruit were collected 30, 45, and 60 days after flowering, and their pigment and sugar content were determined. The anthocyanin content was significantly higher in red than in white fruits. Transcriptome analysis was also performed on the fruit samples, 73,807 unigenes were assembled and annotated to seven databases. Twenty‐one co‐expressed modules were identified via weighted gene co‐expression network analysis, of which two were associated with flavonoids and anthocyanins. Furthermore, in three growth stages, 126, 30, and 124 differentially expressed genes were screened between white and red fruit. Genes involved in flavonoid and anthocyanin metabolism were identified. AaDFR (A. altissima bifunctional dihydroflavonol 4‐reductase/flavanone 4‐reductase) and AaANS (A. altissima anthocyanidin synthase) were associated with flavonoid and anthocyanin metabolism. Members of the AaDFR and AaANS families were also identified, and their basic physicochemical characteristics, conserved domains, motif compositions, phylogenetics, and expression levels were analyzed. The overexpression of AaDFR and AaANS in transgenic Arabidopsis significantly increased the content of seed and foliar flavonoids and anthocyanins. The study elucidated the different mechanisms underlying fruit color development and provided insight into A. altissima plants breeding with commercially desirable properties.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3